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Course overview
Week Topic

1 Introduction & High-dimensional data
2 Dimension reduction I
3 Dimension reduction II
4 Clustering
5 Model-based clustering
6 Deep learning
7 Text mining I
8 Text mining II



Course proceedings
• 1 lecture per week (Wednesday)

• Read required readings before lecture!
• Ask questions!

• 1 lab session per week (Friday)
• Take-home exercises before the lab session
• Additional exercises during the lab session

• 1 assignments
• 25% of your grade
• With peer feedback round
• make groups of 3 by end of the week

• 1 exam (and a resit)



Read the syllabus!
A lot of your questions will be answered 
by reading the syllabus



High-dimensionality



What is “high-dimensional”??



Example 1



Example 2



Example 3



Example 4



High-dimensional
• Microarray dataset with many columns (P) and few 

rows (N)
• Spectroscopy dataset with many measured features 

and few observations
• Neural network with many parameters (weights) and 

few observations (examples)
• Text dataset with few documents and many unique 

words



High-dimensional 

Many parameters (P) relative to the amount of 
information (N) to learn about those parameters



So what?



The curse of dimensionality



The curse of dimensionality
Let’s do linear regression!

x y

0.5 1

0.3 0.8

0.8 1.1

lm(formula = y ~ x, data = dat)
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The curse of dimensionality



The curse of dimensionality
Overdetermined

With P < N, we estimate the parameters to best represent the data (e.g., using least-
squares)

Exactly determined

• With P = N, we can always fit the data perfectly 

• N points always fall on an (N – 1)-dimensional hyperplane (having P = N parameters)

Underdetermined

• There are infinitely many lines going through a point

• There are infinitely many planes going through two points

• There are infinitely many N-dimensional hyperplanes going through N points



The curse of dimensionality
In R

x y

0.5 1

Call:
lm(formula = y ~ x, data = dat)

Residuals:
ALL 1 residuals are 0: no residual degrees of freedom!

Coefficients: (1 not defined because of singularities)
            Estimate Std. Error t value Pr(>|t|)
(Intercept)        1         NA      NA       NA
x                 NA         NA      NA       NA

Residual standard error: NaN on 0 degrees of freedom



N = 20
P = 50

Call:
lm(formula = y ~ ., data = hidim_data)

Residuals:
ALL 20 residuals are 0: no residual degrees of freedom!

Coefficients: (31 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept)   17.278        NaN     NaN      NaN
X1             4.284        NaN     NaN      NaN
X2            17.150        NaN     NaN      NaN
X3            -4.112        NaN     NaN      NaN
X4            12.518        NaN     NaN      NaN
X5            -7.034        NaN     NaN      NaN
X6            -7.189        NaN     NaN      NaN
X7            12.484        NaN     NaN      NaN
X8           -10.152        NaN     NaN      NaN
X9             1.135        NaN     NaN      NaN
X10           26.725        NaN     NaN      NaN
X11            8.157        NaN     NaN      NaN
X12          -18.407        NaN     NaN      NaN
X13           19.460        NaN     NaN      NaN
X14           11.567        NaN     NaN      NaN
X15           -4.300        NaN     NaN      NaN
X16          -11.200        NaN     NaN      NaN
X17          -11.089        NaN     NaN      NaN
X18            1.665        NaN     NaN      NaN
X19          -16.621        NaN     NaN      NaN
X20               NA         NA      NA       NA
X21               NA         NA      NA       NA
X22               NA         NA      NA       NA
X23               NA         NA      NA       NA
X24               NA         NA      NA       NA
X25               NA         NA      NA       NA
X26               NA         NA      NA       NA
X27               NA         NA      NA       NA
X28               NA         NA      NA       NA
X29               NA         NA      NA       NA
X30               NA         NA      NA       NA



The curse of dimensionality







The curse of dimensionality
K-nearest neighbours regression



The curse of dimensionality
K-nearest neighbours regression

ISLR2, p. 110



The curse of dimensionality
What is “nearest”?

ISLR



Break



What can we do?



Battling the curse of dimensionality
• Feature selection

Remove some features

• Penalization / regularization / shrinkage
Constrain model parameters, possibly setting some to 0

• Dimension reduction (next 2 weeks!)
Summarize P features in Q < P features



Feature selection
Filter

Select features based on some (usually univariate) criterion

• Variance filter: drop features with (very) low variance from the dataset

• Correlation filter: drop features with low correlation with outcome from dataset

• What other filter methods can you come up with?

Wrapper

Fit models with different # of features, select best model

• Forward / backward selection

• What is “best”? P-value? AIC/BIC? Out-of-sample MSE?

• Computationally expensive



Battling the curse of dimensionality
• Feature selection

Remove some features

• Penalization / regularization / shrinkage
Constrain model parameters, possibly setting some to 0

• Dimension reduction (next 2 weeks!)
Summarize P features in Q < P features



Penalization / regularization

Ridge regression penalty:

𝜆 ⋅ ෍
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LASSO regression penalty:
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𝑝=1

𝑃
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Penalization / regularization
Penalties put constraints 
on the parameter space

With ridge, the Euclidian 
(𝐿2) distance from 0 is 
constrained

With LASSO, the Manhattan 
distance (𝐿1) from 0 is 
constrained.

Constraints on parameters 
introduce bias (ests. 
different from ML ests.) but 
reduce variance.

SLS, p. 11



Bet on sparsity

Assume underlying process is sparse. 
With LASSO we can recover it (“oracle property”)

What if our assumption is false (i.e., process is not sparse)?
Then no method can do well anyway

Then LASSO is not necessarily worse than other methods



Let’s try it
Battling the curse of dimensionality 
with p = 2 and n = 1



Ridge regression
Loss function

OLS + ridge penalty

Formally, precisely:

𝑓 𝛽0, 𝛽1 = 𝑦 − 𝛽0  − 𝛽1𝑥 2 + 𝜆 ⋅ 

σ𝑝=1
𝑃 𝛽𝑝

2 

Minimize loss for different values of 𝝀





LASSO regression
Loss function

OLS + LASSO penalty

Formally, precisely:

𝑓 𝛽0, 𝛽1 = 𝑦 − 𝛽0  − 𝛽1𝑥 2 + 𝜆 ⋅ 

σ𝑝=1
𝑃 𝛽𝑝  

Minimize loss for different values of 𝝀





New problem: choosing lambda
• Lambda is a hyperparameter
• We have to choose it in some way

Common approach: predictive accuracy
• Choose lambda to minimize MSE on unseen data
• We don’t know out-of-sample MSE, so estimate it
• Cross-validation, train-validation split, LOOCV, BIC, AIC
• Model selection problem!



Technical Bayesian side note
In Bayesian data analysis, we put priors on parameters

• a priori we state that e.g., 𝛽0~𝑁 0, 𝜎2 , 𝛽1~𝑁 0, 𝜎2

• then we use data to update this belief about our parameter

• without data proving otherwise, E 𝛽0 = 0, E 𝛽1 = 0

This is shrinkage / regularization!
• Priors put constraints on parameter space

• Normal distribution prior ≈ Ridge regression

• Laplace distribution prior ≈ LASSO regression

• 𝜎2 is the hyperparameter (similar to 𝜆−1)

Downside: computationally more expensive



LASSO generalizations



LASSO generalization: elastic net
Elastic net loss function:

1

2
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• Combination of LASSO and ridge penalty
• Encourages parameter sharing with correlated vars
• Additional hyperparameter: 𝛼



LASSO generalization: elastic net



LASSO generalization: group LASSO

Group LASSO loss function:
• Put variables 𝑍 & coefficients 𝜃 in groups 𝑗 = 1, … , 𝐽

1
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• When we know certain parameters belong together
• Think about dummy coding categorical variables



LASSO generalization: group LASSO



Implementation: glmnet



Implementation: glmnet
• glmnet can perform LASSO, ridge regression for 

several types of outcomes
• Linear regression
• Logistic regression
• Poisson (count) regression
• Multinomial logistic regression
• …

• It can also perform elastic net regression
• It has cross-validation built-in to select lambda



Implementation: glmnet
library(glmnet)

# generate some fake data matrices

x <- matrix(rnorm(100 * 20), nrow = 100, ncol = 20)

y <- rnorm(100)

# estimate LASSO regression model

fit <- glmnet(x = x, y = y, lambda = 0.1, alpha = 1)

# generate predictions

predict(fit, newx = x)



Implementation: glmnet
# automatically estimate the lambda parameter

fit_cv <- cv.glmnet(x = x, y = y, alpha = 1)

# generate predictions from the best model

predict(fit_cv, newx = x, s = "lambda.min")

# plot the lambdas vs mse

plot(fit_cv)





First practical: perform penalized 
regression with glmnet
Real high-dimensional gene expression 
dataset for cancer prediction



Practical
• Look at infomda2.nl practical 1
• Do exercises 1-5 before Friday
• In class on Friday: discussing exercises 1-5
• Making the remaining assignments



Have a nice day!
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