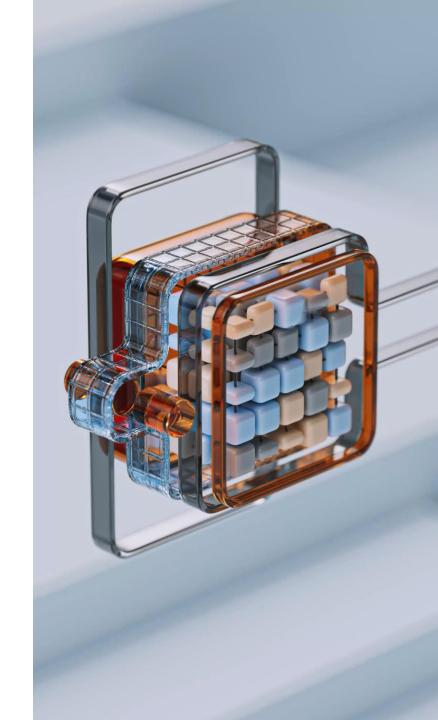
Battling the curse of dimensionality

Erik-Jan van Kesteren



Today

- Introduction
- High-dimensional data / high dimensionality
- The curse of dimensionality
- Regularization / penalization
- Generalizations of the LASSO penalty
 - Elastic net
 - Group LASSO
- Implementation

Introduction

dr. Erik-Jan van Kesteren <u>e.vankesteren1@uu.nl</u> Course coordinator

dr. Dave Hessen

<u>d.j.hessen@uu.nl</u>

Lecturer – dimension reduction

dr. Qixiang Fang <u>q.fang@uu.nl</u> Lecturer – text mining

Thom Volker, MSc t.b.volker@uu.nl

Lab teacher

Course website

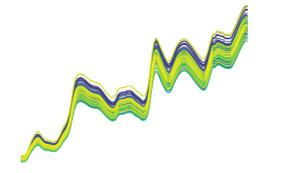
https://infomda2.nl/

Battling the Curse of Dimensionality imes +

 $\leftarrow \rightarrow C \bigcirc A$ https://infomda2.nl

🗅 🚸 🔟 🔟 🔕 💿 🧑 🦉 🧱 🗯 🐧 ổ 🔅 📧 📈 🔤 🕀 Requests - Service Desk 🕀 NN SVG 🔘 squash

INFOMDA2



Materials for Applied Data Science profile course INFOMDA2 *Battling the curse of dimensionality*.

Hosted on GitHub Pages — Theme by orderedlist

Battling the Curse of Dimensionality

This webpage contains all materials required for the Applied Data Science profile course INFOMDA2 'Battling the Curse of Dimensionality'.

The materials on this website are CC-BY-4.0 licensed.

Syllabus

You can find the course syllabus as a web page here or as a pdf here.

Lectures

Number	Title	Slides
01	High-dimensional data	Slides
02	Dimension reduction I	Slides
03	Dimension reduction II	Slides
04	Dooploarning	Clider

Course overview

Week Topic

- 1 Introduction & High-dimensional data
- 2 Dimension reduction I
- 3 Dimension reduction II
- 4 Clustering
- 5 Model-based clustering
- 6 Deep learning
- 7 Text mining I
- 8 Text mining II

Course proceedings

• 1 lecture per week (Wednesday)

- Read required readings before lecture!
- Ask questions!

• 1 lab session per week (Friday)

- Take-home exercises before the lab session
- Additional exercises during the lab session

1 assignments

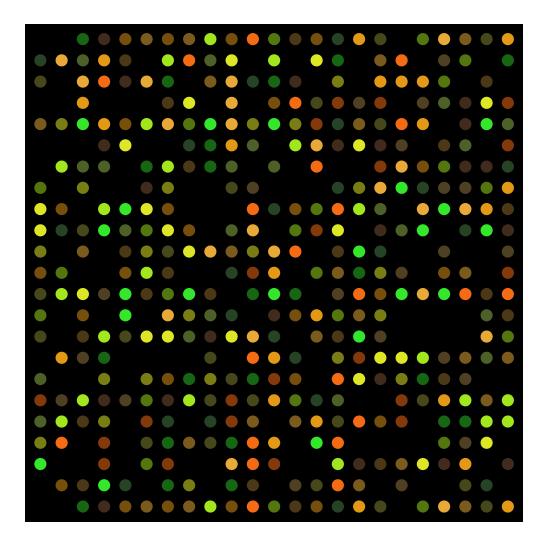
- 25% of your grade
- With peer feedback round
- make groups of 3 by end of the week
- 1 **exam** (and a resit)

Read the syllabus! A lot of your questions will be answered by reading the syllabus

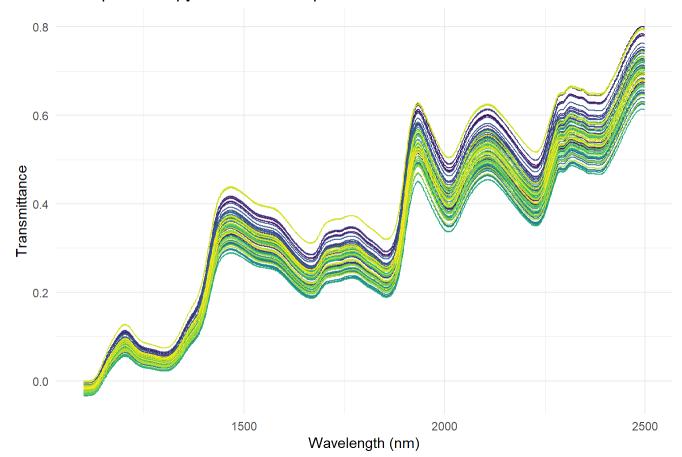
High-dimensionality

What is "high-dimensional"??

Example 1



NIR Spectroscopy of 80 corn samples



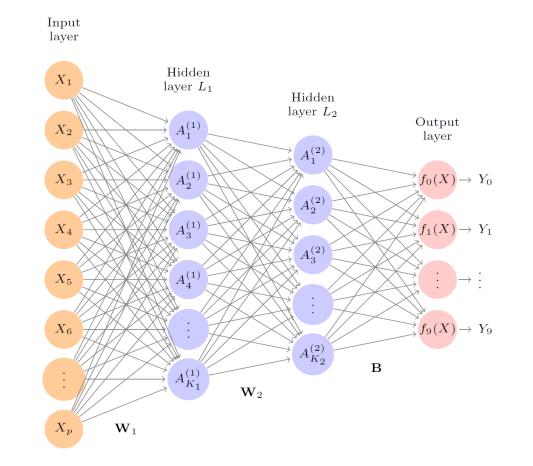
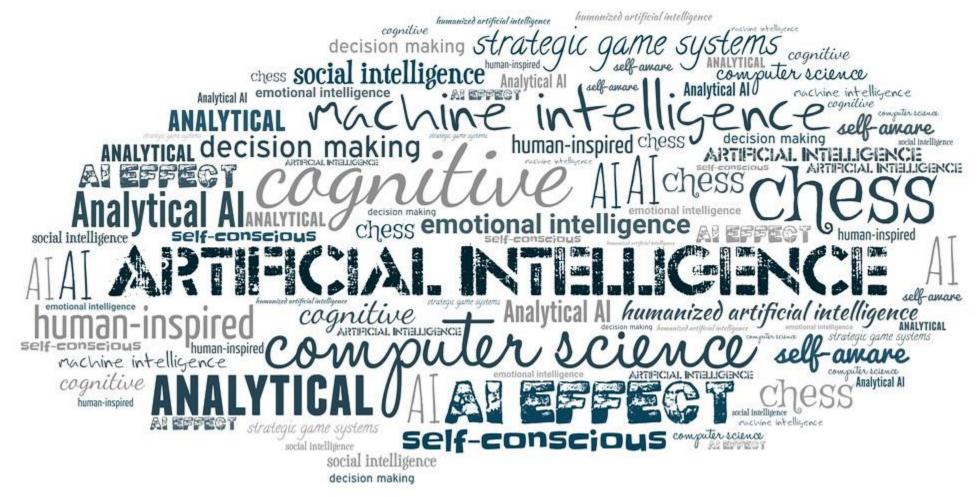


FIGURE 10.4. Neural network diagram with two hidden layers and multiple

Example 4



High-dimensional

- Microarray dataset with many columns (P) and few rows (N)
- Spectroscopy dataset with many measured features and few observations
- Neural network with many parameters (weights) and few observations (examples)
- Text dataset with few documents and many unique words

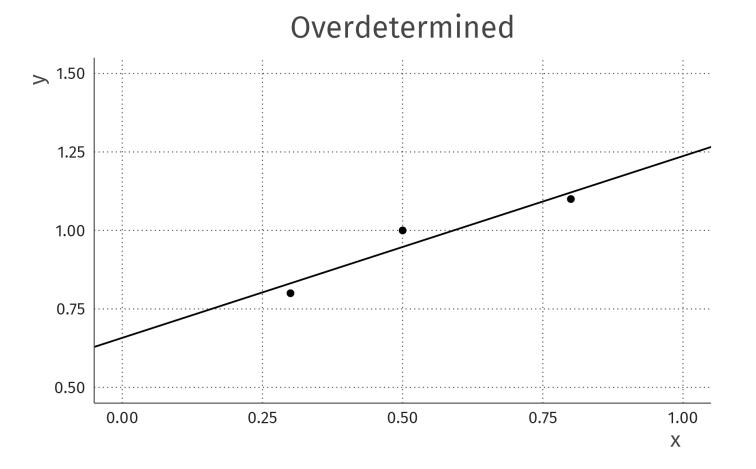
High-dimensional

Many parameters (P) relative to the amount of information (N) to learn about those parameters

Let's do linear regression!

X	у
0.5	1
0.3	0.8
0.8	1.1

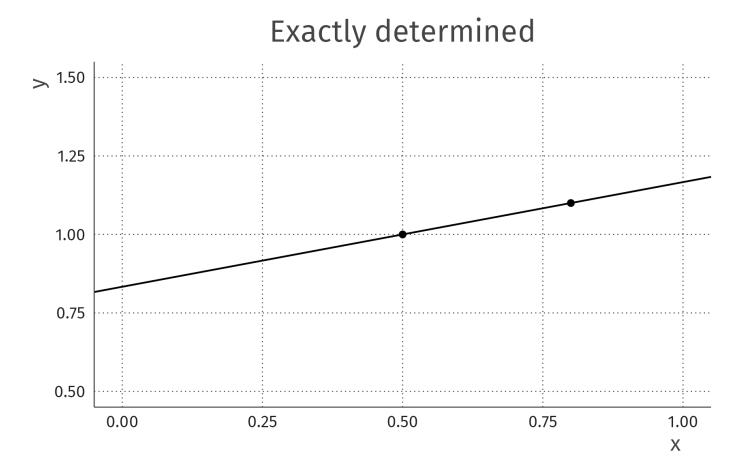
lm(formula = y ~ x, data = dat)



Let's do linear regression!

X	y
0.5	1
0.8	1.1

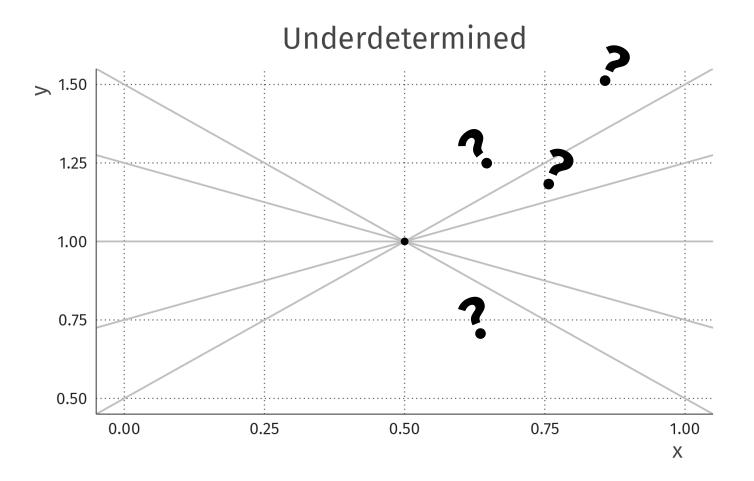
lm(formula = y ~ x, data = dat)



Let's do linear regression!

X	y
0.5	1

lm(formula = y ~ x, data = dat)



Overdetermined

With P < N, we estimate the parameters to best represent the data (e.g., using least-squares)

Exactly determined

- With P = N, we can always fit the data perfectly
- N points always fall on an (N 1)-dimensional hyperplane (having P = N parameters)

Underdetermined

- There are infinitely many lines going through a point
- There are infinitely many planes going through two points
- There are infinitely many N-dimensional hyperplanes going through N points

In R

X	У
0.5	1

```
Call:
lm(formula = y ~ x, data = dat)
Residuals:
ALL 1 residuals are 0: no residual degrees of freedom!
Coefficients: (1 not defined because of singularities)
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   1
                              NA
                                      NA
                                               NA
                  NA
                              NA
                                      NA
                                               NΑ
Х
```

Residual standard error: NaN on 0 degrees of freedom

N = 20 P = 50

Call:			
lm(formula =	у~.,	data =	hidim_data)

Residuals: ALL 20 residuals are 0: no residual degrees of freedom!

Coefficients: (31 not defined because of singularities)

	Estimate	Std.	Error	t	value	Pr(> t)
(Intercept)	17.278		NaN		NaN	NaN
X1	4.284		NaN		NaN	NaN
X2	17.150		NaN		NaN	NaN
X3	-4.112		NaN		NaN	NaN
X4	12.518		NaN		NaN	NaN
X5	-7.034		NaN		NaN	NaN
X6	-7.189		NaN		NaN	NaN
X7	12.484		NaN		NaN	NaN
X8	-10.152		NaN		NaN	NaN
X9	1.135		NaN		NaN	NaN
X10	26.725		NaN		NaN	NaN
X11	8.157		NaN		NaN	NaN
X12	-18.407		NaN		NaN	NaN
X13	19.460		NaN		NaN	NaN
X14	11.567		NaN		NaN	NaN
X15	-4.300		NaN		NaN	NaN
X16	-11.200		NaN		NaN	NaN
X17	-11.089		NaN		NaN	NaN
X18	1.665		NaN		NaN	NaN
X19	-16.621		NaN		NaN	NaN
X20	NA		NA		NA	NA
X21	NA		NA		NA	NA
X22	NA		NA		NA	NA
X23	NA		NA		NA	NA
X24	NA		NA		NA	NA
X25	NA		NA		NA	NA
X26	NA		NA		NA	NA
X27	NA		NA		NA	NA
X28	NA		NA		NA	NA
X29	NA		NA		NA	NA
VOA	NΙΔ		NΙΛ		МΛ	MΛ

()

a high-dimensional space is a lonely place

€Ţ

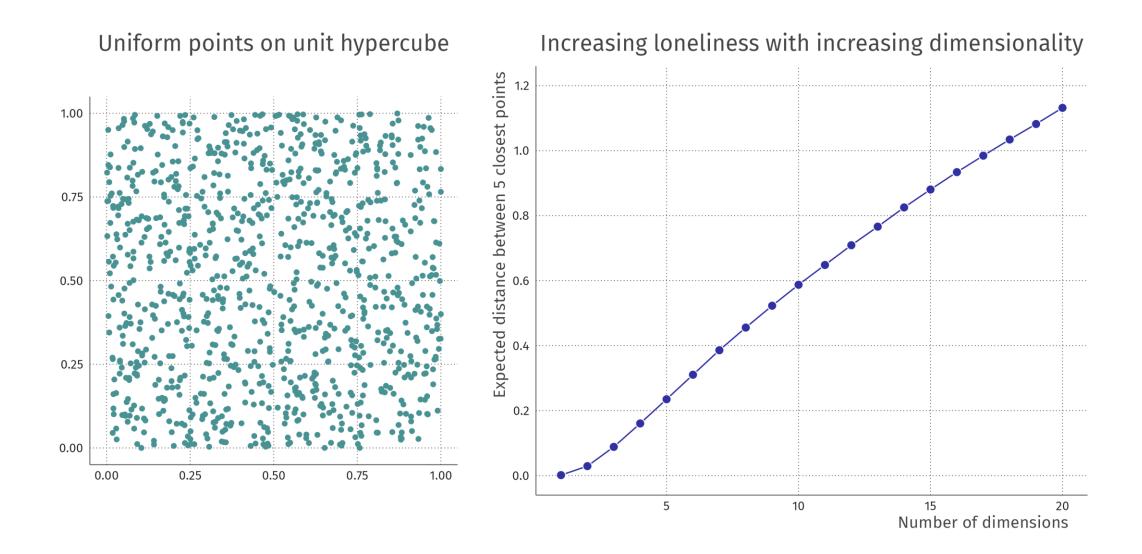
...

仚

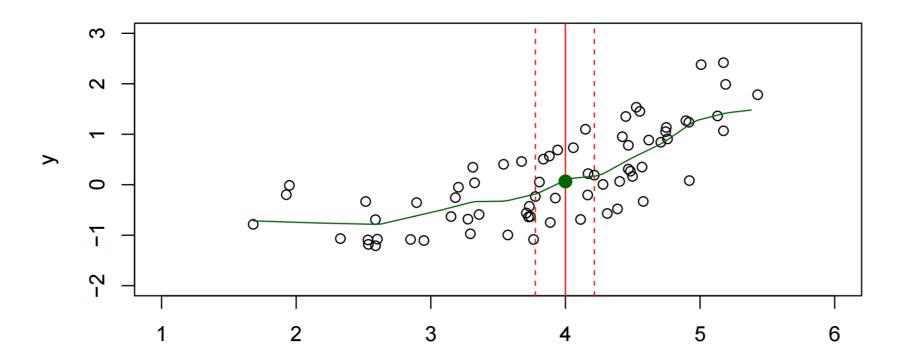
 \bigcirc

4:50 PM · Aug 24, 2014 · Twitter Web Client

47 Retweets 4 Quote Tweets 122 Likes



K-nearest neighbours regression



K-nearest neighbours regression

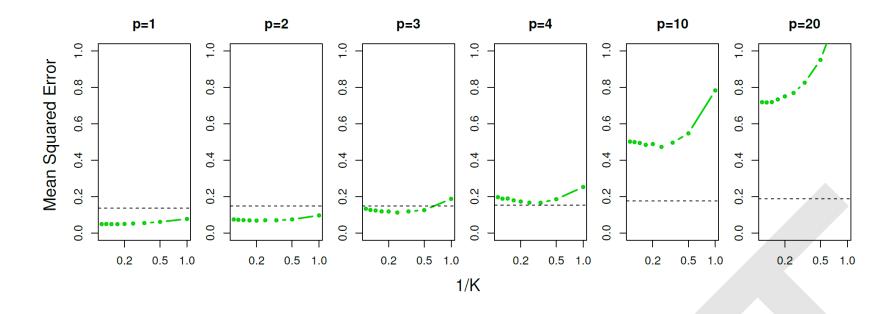
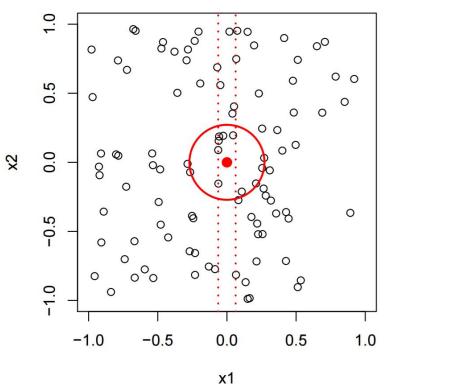
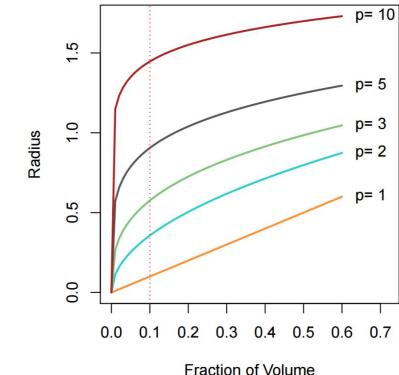


FIGURE 3.20. Test MSE for linear regression (black dashed lines) and KNN

What is "nearest"?



10% Neighborhood



What can we do?

Battling the curse of dimensionality

- Feature selection Remove some features
- **Penalization / regularization / shrinkage** Constrain model parameters, possibly setting some to 0
- **Dimension reduction (next 2 weeks!)** Summarize P features in Q < P features

Feature selection

Filter

Select features based on some (usually univariate) criterion

- *Variance filter*: drop features with (very) low variance from the dataset
- *Correlation filter*: drop features with low correlation with outcome from dataset
- What other filter methods can you come up with?

Wrapper

Fit models with different # of features, select best model

- Forward / backward selection
- What is "best"? P-value? AIC/BIC? Out-of-sample MSE?
- Computationally expensive

Battling the curse of dimensionality

- Feature selection Remove some features
- Penalization / regularization / shrinkage Constrain model parameters, possibly setting some to 0
- **Dimension reduction (next 2 weeks!)** Summarize P features in Q < P features

Penalization / regularization

Ridge regression penalty:

$$\lambda \cdot \sum_{p=1}^{P} \beta_p^2 = \lambda \cdot \|\beta\|_2^2$$

LASSO regression penalty:

$$\lambda \cdot \sum_{p=1}^{P} |\beta_p| = \lambda \cdot ||\beta||_1$$

Penalization / regularization

Penalties put constraints on the parameter space

With ridge, the Euclidian (L_2) distance from 0 is constrained

With LASSO, the Manhattan distance (L_1) from 0 is constrained.

 β_2 $\hat{\beta}^{\bullet}$ β_2 $\hat{\beta}^{\bullet}$ β_2 $\hat{\beta}^{\bullet}$ $\hat{$

Constraints on parameters introduce **bias** (ests. different from ML ests.) but reduce **variance**.

Figure 2.2 Estimation picture for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the residual-sum-of-squares function. The point $\hat{\beta}$ depicts the usual (unconstrained) least-squares estimate. SLS, p. 11

Bet on sparsity

Assume underlying process is sparse. With LASSO we can recover it ("oracle property")

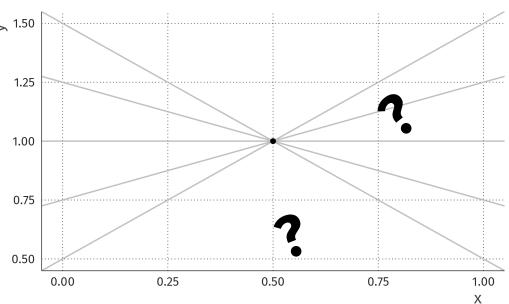
What if our assumption is false (i.e., process is not sparse)? Then no method can do well anyway Then LASSO is not necessarily worse than other methods

Let's try it Battling the curse of dimensionality with p = 2 and n = 1

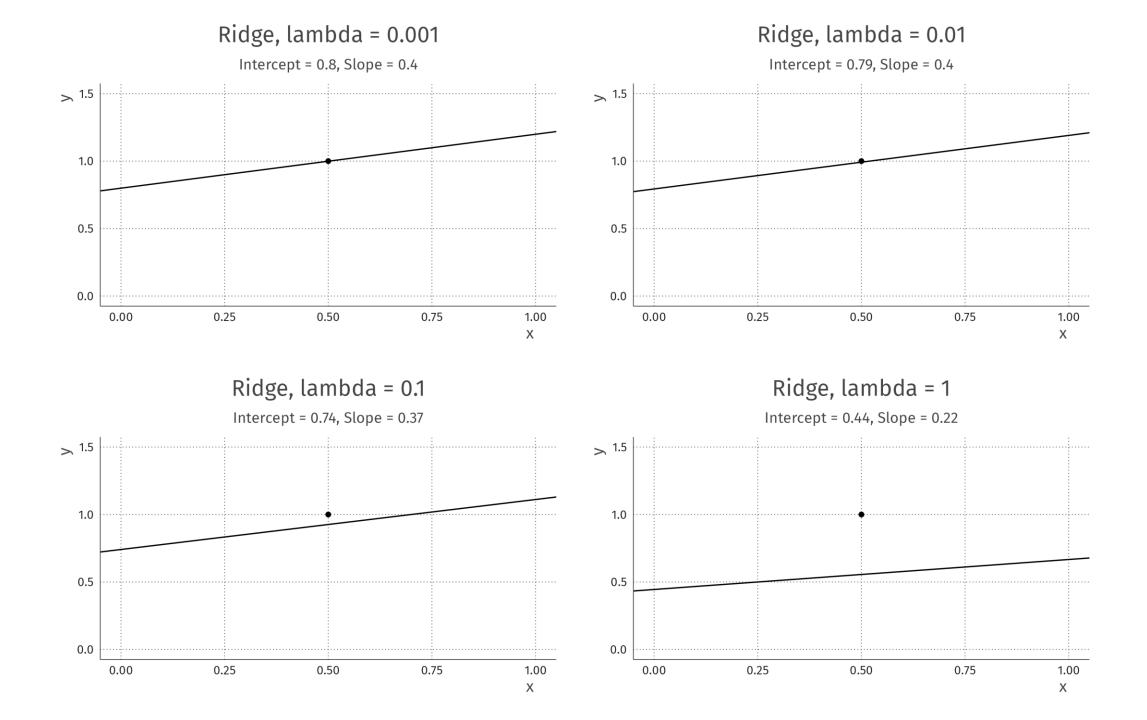
Ridge regression

Loss function OLS + ridge penaltyFormally, precisely: $f(\beta_0, \beta_1) = (y - \beta_0 - \beta_1 x)^2 + \lambda \cdot 0.75$ $\sum_{p=1}^{P} \beta_p^2$ 0.50

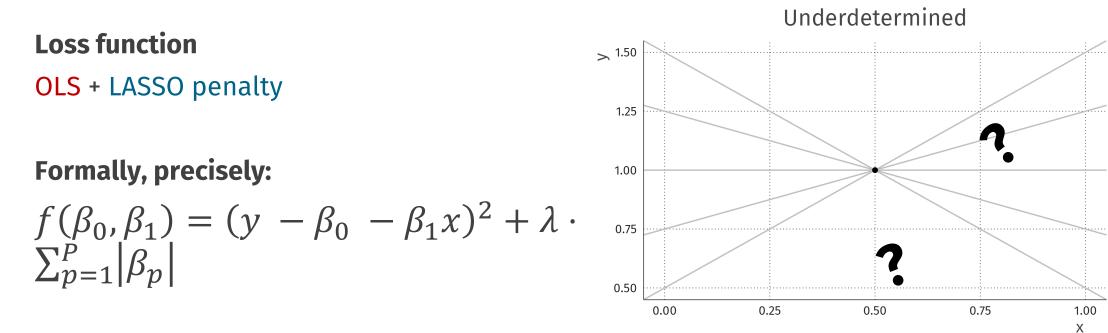
Minimize loss for different values of λ



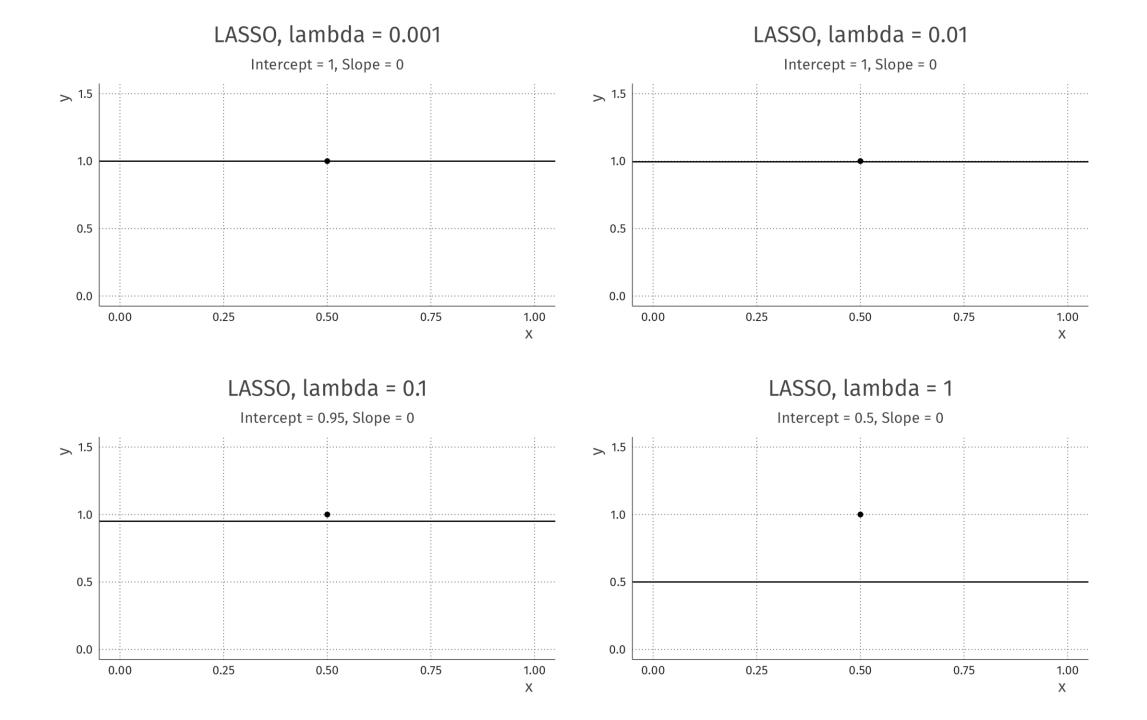
Underdetermined



LASSO regression



Minimize loss for different values of λ



New problem: choosing lambda

- Lambda is a hyperparameter
- We have to choose it in some way

Common approach: predictive accuracy

- Choose lambda to minimize MSE on unseen data
- We don't know out-of-sample MSE, so estimate it
- Cross-validation, train-validation split, LOOCV, BIC, AIC
- Model selection problem!

Technical Bayesian side note

In Bayesian data analysis, we put priors on parameters

- a priori we state that e.g., $\beta_0 \sim N(0, \sigma^2)$, $\beta_1 \sim N(0, \sigma^2)$
- then we use data to update this belief about our parameter
- without data proving otherwise, $\mathrm{E}[\beta_0]=0, \mathrm{E}[\beta_1]=0$

This is shrinkage / regularization!

- Priors put constraints on parameter space
- Normal distribution prior \approx Ridge regression
- Laplace distribution prior pprox LASSO regression
- σ^2 is the hyperparameter (similar to λ^{-1})

Downside: computationally more expensive

LASSO generalizations

LASSO generalization: elastic net

Elastic net loss function:

$$\frac{1}{2} \sum_{n=1}^{N} (y_n - \beta_0 - x_n^T \beta)^2 + \lambda \left[\frac{1}{2} (1 - \alpha) \|\beta\|_2^2 + \alpha \|\beta\|_1 \right]$$

- Combination of LASSO and ridge penalty
- Encourages parameter sharing with correlated vars
- Additional hyperparameter: α

LASSO generalization: elastic net

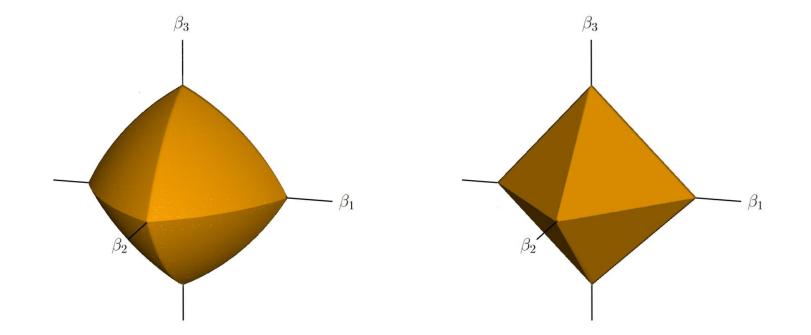


Figure 4.2 The elastic-net ball with $\alpha = 0.7$ (left panel) in \mathbb{R}^3 , compared to the ℓ_1 ball (right panel). The curved contours encourage strongly correlated variables to share coefficients (see Exercise 4.2 for details).

LASSO generalization: group LASSO

Group LASSO loss function:

• Put variables Z & coefficients θ in groups j = 1, ..., J

$$\frac{1}{2} \sum_{n=1}^{N} \left(y_n - \theta_0 - \sum_{j=1}^{J} z_{nj}^T \theta_j \right)^2 + \lambda \sum_{j=1}^{J} \|\theta_j\|_2$$

- When we know certain parameters belong together
- Think about dummy coding categorical variables

LASSO generalization: group LASSO

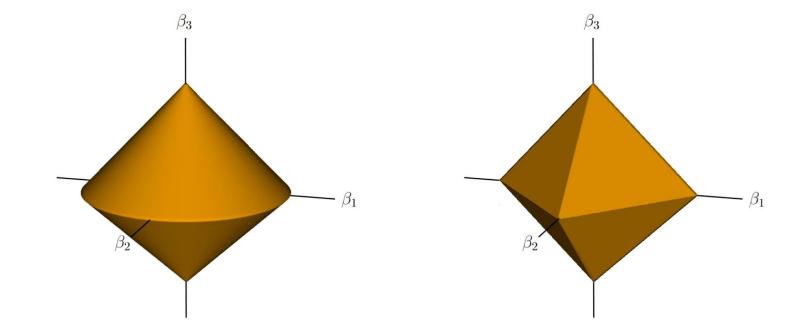


Figure 4.3 The group lasso ball (left panel) in \mathbb{R}^3 , compared to the ℓ_1 ball (right panel). In this case, there are two groups with coefficients $\theta_1 = (\beta_1, \beta_2) \in \mathbb{R}^2$ and $\theta_2 = \beta_3 \in \mathbb{R}^1$.

- glmnet can perform LASSO, ridge regression for several types of outcomes
 - Linear regression
 - Logistic regression
 - Poisson (count) regression
 - Multinomial logistic regression
 - •
- It can also perform elastic net regression
- It has cross-validation built-in to select lambda

library(glmnet)

generate some fake data matrices
x <- matrix(rnorm(100 * 20), nrow = 100, ncol = 20)
 (100)</pre>

y <- rnorm(100)

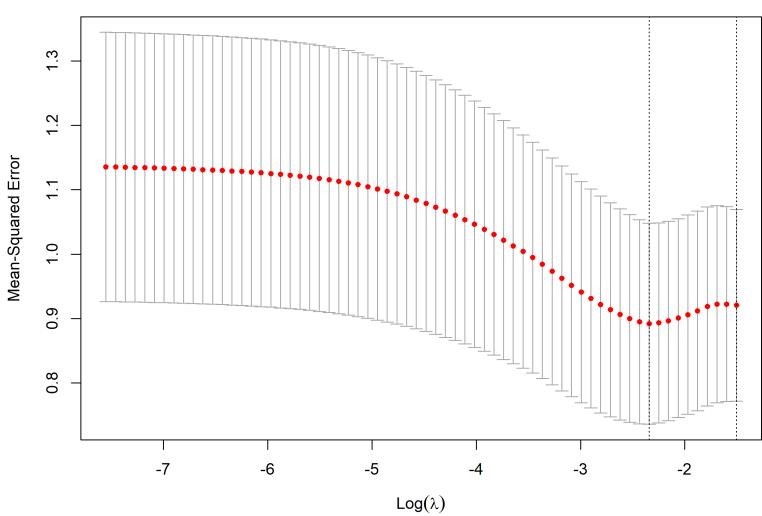
```
# estimate LASSO regression model
fit <- glmnet(x = x, y = y, lambda = 0.1, alpha = 1)</pre>
```

```
# generate predictions
predict(fit, newx = x)
```

automatically estimate the lambda parameter
fit_cv <- cv.glmnet(x = x, y = y, alpha = 1)</pre>

generate predictions from the best model
predict(fit_cv, newx = x, s = "lambda.min")

plot the lambdas vs mse
plot(fit_cv)



First practical: perform penalized regression with glmnet Real high-dimensional gene expression dataset for cancer prediction

Practical

- Look at infomda2.nl practical 1
- Do exercises **1-5** before Friday
- In class on Friday: discussing exercises 1-5
- Making the remaining assignments

Have a nice day!