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Based on Erik-Jan van Kesteren’s slides

Feed-forward and convolutional neural 
networks for image recognition



Last weeks
• Dimension reduction (PCA, SVD, etc.)
• Principal components regression, partial least squares
• Clustering
• Gaussian mixture models (Mclust)



Today
• Introduction to neural networks
• Feed-forward neural networks
• Estimation / optimization
• Convolutional neural networks
• Battling the curse of dimensionality

Learning goal: getting started with & generating 
understanding about neural networks



Introduction



Why should we learn this?
State-of-the-art performance on various tasks

• Text generation (ChatGPT)
• Text mining and Natural Language Processing (next two 

weeks!)
• Weather forecasting
• Object recognition
• Spam filtering
• Image generation
• Style transfer
• …



https://thispersondoesnotexist.com/ 

https://thispersondoesnotexist.com/


http://bethgelab.org



https://community.canvaslms.com/t5/Canvas-
Developers-Group/Canvas-LMS-Cheat-Detection-
System-In-Python/m-p/118134



So what is a neural network?



Neural networks
𝑦 = 𝑓 𝑋 +  ϵ

• Neural networks are a way to specify 𝑓 𝑋

• You can display 𝑓 𝑋  graphically

• Let’s graphically represent linear regression!

𝑓 𝑋𝑖 = ෍
𝑝=1

𝑃

𝛽𝑝𝑥𝑝𝑖



Linear regression as neural net
𝑓 𝑋𝑖 = 𝛼 + ෍

𝑝=1

𝑃

𝛽𝑝𝑥𝑝𝑖Graphical representation
• Parameters are arrows

• Arrows ending in a node 
are summed together

• Intercept is not drawn



Linear regression as neural net
𝑓 𝑋𝑖 = 𝜷 + ෍

𝑝=1

𝑃

𝒘𝑝𝑥𝑝𝑖Neural network jargon
• Parameter = weight

• Intercept = bias



Single layer neural networks



Single layer neural networks
𝑦 = 𝑓 𝑋 +  ϵ

Specify a layer with K hidden units called 𝐴

𝑓 𝑋 = 𝛽0 + ෍
𝑘=1

𝐾

𝛽𝑘𝐴𝑘

Where 

𝐴𝑘 = ℎ𝑘 𝑋 = 𝑔 𝛽𝑘 + ෍
𝑝=1

𝑃

𝑤𝑝𝑘𝑥𝑝



Single layer neural networks
• What about the function 𝑔 ⋅ ?
• This is called the activation function
• A transformation of the linear combination of 

predictors

ℎ𝑘 𝑋 = 𝑔 𝛽𝑘 + ෍
𝑝=1

𝑃

𝑤𝑝𝑘𝑥𝑝



Activation functions
Linear: 𝒈 𝒙 = 𝒙 Sigmoid: 𝒈 𝒙 =

𝟏

𝟏+𝒆−𝒙

ReLu: 𝒈 𝒙 = 𝒎𝒂𝒙(𝟎, 𝒙) • Rectified linear (ReLu) is 
most popular nowadays

• Nonlinearity necessary! 
Otherwise: just a linear 
regression



Activation functions
We can go wider
• More hidden units -> more transformations of input

Universal function approximation theorem
Any “well-behaved” function can be represented by neural net 
of sufficient width with nonlinear activation functions

(you may need an inconvenient number of hidden units!)



https://miro.medium.com/max/1400/1*YDS2pY--VzdsrmWPoBlI0w.gif



Feed-forward neural networks



Feed-forward neural networks
We can go deeper
• More hidden layers after one another
• Higher-order features composed of lower-order features

Universal function approximation theorem, version 2
Any “well-behaved” function can be represented by neural net 
of sufficient depth with nonlinear activation functions

(deep neural nets may be more tractable than wide)



Feed-forward neural networks



Feed-forward neural networks
Feed-forward network 
architecture defined by:
• Number of layers
• Number of hidden units 

in each layer
• Activation function for 

each layer
• Activation function for 

output layer



Keras!
library(keras)

model_dff <- 
  keras_model_sequential() |> 
  layer_flatten(input_shape = c(28, 28)) |> 
  layer_dense(units = 256, activation = "relu") |> 
  layer_dense(units = 128, activation = "relu") |> 
  layer_dense(10, activation = "softmax")



Keras!
summary(model_dff)

Layer (type)                          Output Shape                       Param #      
======================================================================================
flatten (Flatten)                     (None, 784)                        0            
______________________________________________________________________________________
dense_1 (Dense)                       (None, 256)                        200960       
______________________________________________________________________________________
dense_2 (Dense)                       (None, 128)                        32896        
______________________________________________________________________________________
dense_3 (Dense)                       (None, 10)                         1290         
======================================================================================
Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0
______________________________________________________________________________________



How to estimate parameters?



Estimating parameters
• We need some way to measure how well the network does

• Parameters that make the network perform well are good!

• Remember ML estimation: finding መ𝜃 maximizing 𝑝 𝑦 መ𝜃

• Remember OLS estimation: finding መ𝛽 minimizing ∑ 𝑦 − 𝑋 መ𝛽
2

 

• Same for neural nets: we minimize some loss function 𝐿 𝜃



Loss function
• For continuous outcomes you can use squared error

(same as linear regression!)
𝐿 𝜃 = 𝑓 𝑋𝑖; 𝜃 − 𝑦𝑖

2 

• For binary outcomes you can use binary cross-entropy
(same as logistic regression!)

𝐿 𝜃 = − 𝑦𝑖 log 𝑓 𝑋𝑖; 𝜃 + 1 − 𝑦𝑖 log 𝑓 𝑋𝑖; 𝜃



Loss function
• What do the parameters need to be to minimize loss?

• We don’t know this!

• But we might know the direction in which we need to move to 
increase the loss

• This direction is called the gradient (of loss w.r.t parameters) 

𝑔 𝜃 = ∇𝜃=
𝜕

𝜕𝜃
𝐿 𝜃

• (Looks scary, but it’s just a number for each parameter)



Gradient descent
Iteration: step of size 𝜆 in the direction of the negative gradient

𝜃 𝑗+1 = 𝜃 𝑗 − 𝜆 ⋅ 𝑔 𝜃 𝑗

Let’s try it out with a simple example!

• 𝐿 𝜃 = 𝜃2 − 𝜃 + 0.25

• 𝑔 𝜃 = 2𝜃 − 1

• 𝜆 = 0.25
 





Stochastic gradient descent

• Instead of computing the gradients w.r.t. the entire 
loss function, only use a random batch of data

• Take a step after each batch 
• Common batch sizes: 32, 64, 128, 256, 512

• One look at the full data = 1 epoch



Stochastic gradient descent
• (full-)batch mode: where the batch size is equal to the 

total dataset thus making the iteration and epoch values 
equivalent

• mini-batch mode: where the batch size is greater than 
one but less than the total dataset size. Usually, a number 
that can be divided into the total dataset size.

• stochastic mode: where the batch size is equal to one. 
Therefore, the gradient and the neural network 
parameters are updated after each sample.

https://ai.stackexchange.com/questions/8560/how-do-i-choose-the-optimal-batch-size



Gradient computation
• But in neural networks, how do we compute gradients? 

• We have functions of functions!

• Software like tensorflow / Keras / torch does this for you!

• Backpropagation: smart repeated use of the chain rule to compute 
derivatives

• Software also implements gradient descent (and friends)





Programming pattern: estimation
model_dff |> 
  compile(
    loss = "sparse_categorical_crossentropy",
    optimizer = "adam"
  ) 

model_dff |> 
  fit(
    x = X,
    y = y,
    batch_size = 32,
    epochs = 10
  )



Conclusion: estimation
• We need a loss function (e.g., squared error)

• We need gradients (how to change 𝜃 to reduce 𝐿 𝜃 )
• Gradient descent: take steps in direction of -gradient
• Stochastic GD: do this with data batches

• Software handles all of this (black box!!)

• Advantage: we can focus on the architecture



Break



Image processing with 
convolutional neural networks



Prediction for MNIST
Each example has:
• 28*28 = 784 input features

• Values between 0-255 (8 bit)
• Usually normalized to be 0-1
• 1 = black, 0 = white, 0.5 = grey

• 10 outcome categories (0-9)
• One-hot encoding for outcome

• (cool way to say dummy coding)
• 1 = 0 1 0 0 0 0 0 0 0 0 
• 5 = 0 0 0 0 0 1 0 0 0 0



What is a convolution
• Convolution is applying a kernel (filter) over an image
• The kernel (filter) defines which feature is important in the 

image



What is a convolution



What is a convolution

https://github.com/vdumoulin/conv_arithmetic



https://setosa.io/ev/image-kernels/

https://setosa.io/ev/image-kernels/


Convolution layers
• A convolutional neural 

network is a NN with one or 
more convolution layers

• The parameters / weights in 
a convolution layer are the 
elements of the filter

• The filter is learnt by the 
network!



Convolution layers
• In each convolution layer, 

you can create multiple 
filters

• Number of parameters is 
function of:
• Number of filters (e.g. 6)

• Size of each filter (e.g. 2x2)

• NOT the input dimension!

• Parameter sharing



Pooling layer
• Convolution layers are 

usually followed by a 
pooling layer

• Reduces dimensionality

• Location invariance: 
Robustness against pixel 
shift / small rotations

• Max pool most common



Pooling layer



Architecture of a CNN



Applying CNN to MNIST
model_cnn <- 
  keras_model_sequential(input_shape = c(28, 28, 1)) |> 
  layer_conv_2d(6, c(5, 5)) |> 
  layer_max_pooling_2d(pool_size = c(4, 4)) |>
  layer_flatten() |> 
  layer_dense(units = 32, activation = "relu") |> 
  layer_dense(10, activation = "softmax")



Model summary
summary(model_cnn)

Layer (type)                                  Output Shape                             Param #         

=======================================================================================================

conv2d_2 (Conv2D)                             (None, 24, 24, 6)                        156             

_______________________________________________________________________________________________________

max_pooling2d_2 (MaxPooling2D)                (None, 6, 6, 6)                          0               

_______________________________________________________________________________________________________

flatten_3 (Flatten)                           (None, 216)                              0               

_______________________________________________________________________________________________________

dense_8 (Dense)                               (None, 32)                               6944            

_______________________________________________________________________________________________________

dense_7 (Dense)                               (None, 10)                               330             

=======================================================================================================

Total params: 7,430

Trainable params: 7,430

Non-trainable params: 0



Compare to DFF model
summary(model_dff)

Layer (type)                          Output Shape                       Param #      
======================================================================================
flatten (Flatten)                     (None, 784)                        0            
______________________________________________________________________________________
dense_1 (Dense)                       (None, 256)                        200960       
______________________________________________________________________________________
dense_2 (Dense)                       (None, 128)                        32896        
______________________________________________________________________________________
dense_3 (Dense)                       (None, 10)                         1290         
======================================================================================
Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0
______________________________________________________________________________________



Applying CNN to MNIST
model_cnn |> 
  compile(
    loss = "sparse_categorical_crossentropy",
    optimizer = "adam"
  )

model_cnn |> 
  fit(
    x = mnist$train$x, 
    y = mnist$train$y,
    epochs = 10,
    validation_split = 0.2,
    verbose = 2
  )



Performance comparison: DFF
pred
obs    0    1    2    3    4    5    6    7    8    9
  0  975    0    1    0    0    1    0    0    2    1
  1    0 1129    1    1    0    1    1    2    0    0
  2    4    0 1015    2    0    0    3    2    6    0
  3    0    0    6  991    0    4    0    4    1    4
  4    3    2    2    0  952    0    5    2    0   16
  5    3    0    0   10    0  869    4    0    3    3
  6    6    2    0    1    2    4  942    0    1    0
  7    2    5    6    2    0    0    0 1004    3    6
  8    6    0    2    3    2    4    1    4  946    6
  9    4    3    0    2    3    1    1    3    1  991



Performance comparison: CNN
pred
obs    0    1    2    3    4    5    6    7    8    9
  0  971    0    1    0    1    1    2    1    2    1
  1    0 1126    2    1    0    0    2    0    4    0
  2    1    1 1020    1    1    0    0    1    6    1
  3    0    0    2  997    0    5    0    1    2    3
  4    0    0    1    0  970    0    0    0    1   10
  5    2    0    0    3    0  881    3    0    2    1
  6    5    2    0    0    5    2  941    0    3    0
  7    1    3   15    3    0    1    0  994    3    8
  8    5    0    3    2    0    0    2    2  956    4
  9    1    1    0    1    4    5    0    2    6  989



Performance comparison: CNN
# accuracy
sum(diag(cmat_dff)) / sum(cmat_dff)

#> [1] 0.9814

sum(diag(cmat_cnn)) / sum(cmat_cnn)

#> [1] 0.9845



What about the features?
Unboxing the black box
• Extract the weights of the convolution layer to find the 

features (filters) that were learnt
• Apply the filters to some example images to get an 

idea of which features are discriminative for the 
different numbers







Cool hack: pretrained CNNs
• Download the convolutional layer weights from existing neural 

network trained on many images

• Apply them to your own images

• Result: a feature vector per image

• Use these feature vectors as input dataset for:
• Deep feedforward neural network
• Logistic regression
• Support vector machine
• …

• This can work really well!!



Conclusion: CNN
• Convolution = applying kernels (filters) over an image
• CNNs employ convolution layers

• Parameter sharing
• Feature detection

• Followed by pooling layers
• location invariance

• (Was) state-of-the art in image recognition
• Use pretrained networks as a quick proxy



Battling the curse of dimensionality



Regularization in NNs
• We may have thousands or even millions of 

parameters

• How can we avoid overfitting? 
• How can we fight the curse of dimensionality? 

• NNs are not magic: we need regularization.
• Regularization is anything which introduces bias in the 

parameters to improve generalization (Goodfellow et al., 
2016)



Regularization in NNs
• Convolution: parameters are set to be equal to one another in 

different areas of image (parameter sharing)
• L1 or L2 penalty applied to weights is common in neural 

networks (keras can do it!)
• Dropout regularization: In each iteration, only update a 

subset of the parameters
• Early stopping: Do not train for many epochs, but only until 

validation set loss does not improve
• Data augmentation: Add shifted / rotated versions of images 

to input (upside-down tiger is still a tiger!)



Conclusion
• Introduction to neural networks
• Feed-forward neural networks
• Estimation / optimization
• Convolutional neural networks
• Battling the curse of dimensionality



Epilogue: neural network zoo



Neural network zoo
• You can see how far we got:

• Perceptron (nonlinear regression)
• Feed forward
• Deep feed forward
• Deep convolutional network

• There is much more ☺



This was just the start
• Recurrent neural networks: for sequences (like text!)
• Autoencoders (nonlinear dimension reduction)
• Generative adversarial networks 

https://thispersondoesnotexist.com/ 
• Transformers (engine behind ChatGPT!)

• Look at https://www.asimovinstitute.org/neural-
network-zoo/ 

https://thispersondoesnotexist.com/
https://www.asimovinstitute.org/neural-network-zoo/
https://www.asimovinstitute.org/neural-network-zoo/


Practical this Friday: image recognition 
with Keras in R
Run the take-home part of the 
assignment.


	Slide 1
	Slide 2: Last weeks
	Slide 3: Today
	Slide 4: Introduction
	Slide 5: Why should we learn this?
	Slide 6
	Slide 7
	Slide 8
	Slide 9: So what is a neural network?
	Slide 10: Neural networks
	Slide 11: Linear regression as neural net
	Slide 12: Linear regression as neural net
	Slide 13: Single layer neural networks
	Slide 14: Single layer neural networks
	Slide 15: Single layer neural networks
	Slide 16: Activation functions
	Slide 17: Activation functions
	Slide 18
	Slide 19: Feed-forward neural networks
	Slide 20: Feed-forward neural networks
	Slide 21: Feed-forward neural networks
	Slide 22: Feed-forward neural networks
	Slide 23: Keras!
	Slide 24: Keras!
	Slide 25: How to estimate parameters?
	Slide 26: Estimating parameters
	Slide 27: Loss function
	Slide 28: Loss function
	Slide 29: Gradient descent
	Slide 30
	Slide 31: Stochastic gradient descent
	Slide 32: Stochastic gradient descent
	Slide 33: Gradient computation
	Slide 34
	Slide 35: Programming pattern: estimation
	Slide 36: Conclusion: estimation
	Slide 37: Break
	Slide 38: Image processing with convolutional neural networks
	Slide 39: Prediction for MNIST
	Slide 40: What is a convolution
	Slide 41: What is a convolution
	Slide 42: What is a convolution
	Slide 43
	Slide 44: Convolution layers
	Slide 45: Convolution layers
	Slide 46: Pooling layer
	Slide 47: Pooling layer
	Slide 48: Architecture of a CNN
	Slide 49: Applying CNN to MNIST
	Slide 50: Model summary
	Slide 51: Compare to DFF model
	Slide 52: Applying CNN to MNIST
	Slide 53: Performance comparison: DFF
	Slide 54: Performance comparison: CNN
	Slide 55: Performance comparison: CNN
	Slide 56: What about the features?
	Slide 57
	Slide 58
	Slide 59: Cool hack: pretrained CNNs
	Slide 60: Conclusion: CNN
	Slide 61: Battling the curse of dimensionality
	Slide 62: Regularization in NNs
	Slide 63: Regularization in NNs
	Slide 64: Conclusion
	Slide 65: Epilogue: neural network zoo
	Slide 66: Neural network zoo
	Slide 67: This was just the start
	Slide 68: Practical this Friday: image recognition with Keras in R

