Deep learning

Feed-forward and convolutional neural
networks for image recognition

Qixiang Fang

Based on Erik-Jan van Kesteren’s slides



Last weeks

e Dimension reduction (PCA, SVD, etc.)
* Principal components regression, partial least squares

* Clustering
« Gaussian mixture models (Mclust)



Today

* Introduction to neural networks

* Feed-forward neural networks
 Estimation / optimization

e Convolutional neural networks

* Battling the curse of dimensionality

Learning goal: getting started with & generating
understanding about neural networks



Introduction



Why should we learn this?

State-of-the-art performance on various tasks
» Text generation (ChatGPT)

 Text mining and Natural Language Processing (next two
weeks!)

« Weather forecasting
* Object recognition

« Spam filtering

* Image generation

* Style transfer



https://thispersondoesnotexist.com/



https://thispersondoesnotexist.com/
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So what is a neural network?



Neural networks

y=f(X)+ €

« Neural networks are a way to specify f(X)
* You can display f(X) graphically

* Let’s graphically represent lilr}ear regression!

f(Xi) — ,Bpxpi

p=1



Linear regression as neural net

Graphical representation ) =a+y  fyen
p=1
* Parameters are arrows

« Arrows ending in a node
are summed together

* Intercept is not drawn




Linear regression as neural net

Neural network jargon FAI =B+ wyny
p=1

« Parameter = weight

* Intercept = bias




Single layer neural networks
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Single layer neural networks
y=f(X)+ €

Specify a layer with K hidden units called A

K

fX)=pBo+ br Ay

k=1
Where

P
Ay =hX) =g (ﬁk + szlwpkxp>



Single layer neural networks

« What about the function g(-)?
* This is called the activation function

e A transformation of the linear combination of
predictors

he(X) =g (ﬁk + szlwpkxp>



Activation functions

Linear: g(x) = x Sigmoid: g(x) = 1+i—x
ReLu: g(x) = max(0, x) e Rectified linear (ReLu) is

most popular nowadays

« Nonlinearity necessary!
Otherwise: just a linear

regression




Activation functions

We can go wider
« More hidden units -> more transformations of input

Universal function approximation theorem

Any “well-behaved” function can be represented by neural net
of sufficient width with nonlinear activation functions



https://miro.medium.com/max/1400/1*YDS2pY--VzdsrmWPoBLlIOw.gif



Feed-forward neural networks
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Feed-forward neural networks

We can go deeper
« More hidden layers after one another
« Higher-order features composed of lower-order features

Universal function approximation theorem, version 2

Any “well-behaved” function can be represented by neural net
of sufficient depth with nonlinear activation functions



Feed-forward neural networks
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Feed-forward neural networks

Feed-forward network -
architecture defined by:

* Number of layers

 Number of hidden units
In each layer

 Activation function for
each layer

e Activation function for
output layer




Keras!

library(keras)

model dff <-
keras_model_sequential() |>
layer flatten(input_shape = c(28, 28)) |>
layer_dense(units = 256, activation = "relu") |>
layer_dense(units = 128, activation = "relu") |>
layer _dense(10, activation = "softmax")



Keras!

summary(model_dff)

Layer (type) Output Shape Param #
dense_1 (Dense) ~ (Nome, 256) 200960
dense_2 (Dense) ~ (Nome, 128) 32896
dense_3 (Dense) ~ (Nome, 100 1290

Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0



How to estimate parameters?



Estimating parameters

* We need some way to measure how well the network does
« Parameters that make the network perform well are good!

- Remember ML estimation: finding § maximizing p(y|6)

- Remember OLS estimation: finding 8 minimizing (v —X,BA)2
« Same for neural nets;: we minimize some loss function L(6)



Loss function

* For continuous outcomes you can use squared error
L(6) = (f(X;;0) — y;)?

* For binary outcomes you can use binary cross-entropy

L(8) = —(y;log(f(X;0)) + (1 — y) log(f(X;; 0)))



Loss function

« What do the parameters need to be to minimize loss?

« We don’t know this!

« But we might know the direction in which we need to move to
Increase the loss

* This direction is called the gradient

0
9(8) = Vo= =5 1(6)

e (Looks scary, but it's just a number for each parameter)



Gradient descent

Iteration: step of size 1 in the direction of the negative gradient

Let’s try it out with a simple example!
« L(O) =6% -0+ 0.25

« g(0) =26 -1

e A =0.25
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Stochastic gradient descent

* Instead of computing the gradients w.r.t. the entire
loss function, only use a random batch of data

* Take a step after each batch
« Common batch sizes: 32, 64, 128, 256, 512

* One look at the full data =1 epoch



Stochastic gradient descent

» (full-)batch mode: where the batch size is equal to the
total dataset thus making the iteration and epoch values
equivalent

- mini-batch mode: where the batch size is greater than
one but less than the total dataset size. Usually, a number
that can be divided into the total dataset size.

- stochastic mode: where the batch size is equal to one.
Therefore, the gradient and the neural network
parameters are updated after each sample.

https://ai.stackexchange.com/questions/8560/how-do-i-choose-the-optimal-batch-size



Gradient computation

« But in neural networks, how do we compute gradients?
« We have functions of functions!
 Software like tensorflow / Keras / torch does this for you!

- Backpropagation: smart repeated use of the chain rule to compute
derivatives

dz dz dy
de dy dz’

» Software also implements gradient descent (and friends)






Programming pattern: estimation

model _dff |>
compile(
loss = "sparse_categorical _crossentropy",
optimizer = "adam"

)

model _dff |>
fit(
X X,
y =Y,
batch_size = 32,
epochs = 10
)



Conclusion: estimation

 We need a loss function (e.g., squared error)

 We need gradients (how to change 6 to reduce L(6))
« Gradient descent: take steps in direction of -gradient
« Stochastic GD: do this with data batches

- Software handles all of this (black box!!)

« Advantage: we can focus on the architecture



Break



Image processing with
convolutional neural networks



Prediction for MNIST

Each example has:

« 28*28 = 784 input features
» Values between 0-255 (8 bit)
« Usually normalized to be 0-1
« 1= black, 0 = white, 0.5 = grey

* 10 outcome categories (0-9) 9‘_

—

« One-hot encoding for outcome
* (cool way to say dummy coding)

*1=0100000000
*5=0000010000

/
3
4
A4



What is a convolution

 Convolution is applying a kernel (filter) over an image

» The kernel (filter) defines which feature is important in the
image



What is a convolution

a b ¢

. o ld e f

Original Image = g b

J kL

Now consider a 2 x 2 filter of the form

. . a [
Convolution Filter = [ ] .

Y0

When we convolve the image with the filter, we get the result®

ao + DB+ dy+ed ba+ceB+ey+ [
Convolved Image = |da+eB+ gy + hd ea+ fB+ hy+ 10

ga+hB+jy+kS ha+iB+ky+15




What is a convolution

https://github.com/vdumoulin/conv_arithmetic



https://setosa.io/ev/image-Rernels/



https://setosa.io/ev/image-kernels/

Convolution layers

e A convolutional neural
network is a NN with one or
more convolution layers

* The parameters / weights in
a convolution layer are the
elements of the filter

* The filter is learnt by the
network!
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Convolution layers

* In each convolution layer,
you can create multiple
filters

 Number of parameters is
function of:
» Number of filters (e.g. 6)
» Size of each filter (e.g. 2x2)
« NOT the input dimension!

- Parameter sharing
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Pooling layer

« Convolution layers are
usually followed by a
pooling layer

« Reduces dimensionality

* Location invariance:
Robustness against pixel
shift / small rotations

* Max pool most common

32
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Pooling layer
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Architecture of a CNN

convolve

FIGURE 10.8. Architecture of a deep CNN for the CIFAR100 classification task.
Conwvolution layers are interspersed with 2 X 2 max-pool layers, which reduce the
size by a factor of 2 wn both dimensions.



Applying CNN to MNIST

model _cnn <-
keras_model_sequential(input_shape = c(28, 28, 1)) |>
layer_conv_2d(6, c(5, 5)) |>
layer_max_pooling 2d(pool _size = c(4, 4)) |>
layer flatten() |>
layer_dense(units = 32, activation "relu") |>

"softmax")

layer_dense(10, activation



Model summary

summary(model_cnn)

Layer (type) Output Shape Param #

nax_pooling2d 2 (Maxpooling20)  (None, 6,6, 6 o
flatten3 (Fatten) (ore, 2160 o
dense s (pense) (ore, 320 oows
dense7 (demse) (Nore, 10 300

Total params: 7,430
Trainable params: 7,430

Non-trainable params: 0



Compare to DFF model

summary(model_dff)

Layer (type) Output Shape Param #
dense_1 (Dense)  (Nome, 256) 200960
dense_2 (Dense)  (None, 128) 32896
dense_3 (Dense)  (None, 100 1299

Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0



Applying CNN to MNIST

model_cnn [>

compile(
loss = "sparse_categorical _crossentropy",
optimizer = "adam"

)

model _cnn [>

fit(
X = mnist$train$x,
y = mnist$trainsy,

epochs = 10,
validation_split = 0.2,
verbose = 2



Performance comparison: DFF
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Performance comparison: CNN
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Performance comparison: CNN

# accuracy
sum(diag(cmat_dff)) / sum(cmat_dff)

#> [1] 0.9814
sum(diag(cmat_cnn)) / sum(cmat_cnn)

#> [1] 0.9845



What about the features?

Unboxing the black box

* Extract the weights of the convolution layer to find the
features (filters) that were learnt

« Apply the filters to some example images to get an
Idea of which features are discriminative for the
different numbers






SNZ2BEETHE
O0RQ 0 EEdl
HRY =S B
/M / ViAW



Cool hack: pretrained CNNs

Download the convolutional layer weights from existing neural
network trained on many images

Apply them to your own images

Result: a feature vector per image

Use these feature vectors as input dataset for:
» Deep feedforward neural network
 Logistic regression
« Support vector machine

* This can work really well!!



Conclusion: CNN

» Convolution = applying kernels (filters) over an image

* CNNs employ convolution layers
« Parameter sharing
* Feature detection

* Followed by pooling layers
* location invariance

* (Was) state-of-the art in image recognition
« Use pretrained networks as a quick proxy



Battling the curse of dimensionality



Regularization in NNs

« We may have thousands or even millions of
parameters

 How can we avoid overfitting?
* How can we fight the curse of dimensionality?

* NNs are not magic: we need regularization.

« Regularization is anything which introduces bias in the
parameters to improve generalization (Goodfellow et al.,

2016)



Regularization in NNs

 Convolution: parameters are set to be equal to one another in
different areas of image (parameter sharing)

* L1or L2 penalty applied to weights is common in neural
networks (keras can do it!)

 Dropout regularization: In each iteration, only update a
subset of the parameters

- Early stopping: Do not train for many epochs, but only until
validation set loss does not improve

- Data augmentation: Add shifted / rotated versions of images
to input (upside-down tiger is still a tiger!)



Conclusion

* Introduction to neural networks

* Feed-forward neural networks
 Estimation / optimization

e Convolutional neural networks

* Battling the curse of dimensionality



Epilogue: neural network zoo



Neural network zoo

*You can see how far we got:
Perceptron (nonlinear regression

e There is much more ©
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This was just the start

* Recurrent neural networks: for sequences (like text!)
» Autoencoders (nonlinear dimension reduction)

« Generative adversarial networks
https://thispersondoesnotexist.com/

» Transformers (engine behind ChatGPT!)

* Look at https://www.asimovinstitute.org/neural-
network-zoo/



https://thispersondoesnotexist.com/
https://www.asimovinstitute.org/neural-network-zoo/
https://www.asimovinstitute.org/neural-network-zoo/

Practical this Friday: image recognition
with Keras inR

Run the take-home part of the
assignment.
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