Deep learning

Feed-forward and convolutional neural
networks for image recognition

Qixiang Fang

Based on Erik-Jan van Kesteren’s slides

Last weeks

e Dimension reduction (PCA, SVD, etc.)
* Principal components regression, partial least squares

* Clustering
« Gaussian mixture models (Mclust)

Today

* Introduction to neural networks

* Feed-forward neural networks
 Estimation / optimization

e Convolutional neural networks

* Battling the curse of dimensionality

Learning goal: getting started with & generating
understanding about neural networks

Introduction

Why should we learn this?

State-of-the-art performance on various tasks
» Text generation (ChatGPT)

 Text mining and Natural Language Processing (next two
weeks!)

« Weather forecasting
* Object recognition

« Spam filtering

* Image generation

* Style transfer

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/

Compressed Data

o7 -
</ Y

Va7 ®L @l
Original /' \\ Learned

mushroom :> :> representation

Encode Decode

https://community.canvaslms.com/t5/Canvas-
Developers-Group/Canvas-LMS-Cheat-Detection-
System-In-Python/m-p/118134

So what is a neural network?

Neural networks

y=f(X)+ €

« Neural networks are a way to specify f(X)
* You can display f(X) graphically

* Let’s graphically represent lilr}ear regression!

f(Xi) — ,Bpxpi

p=1

Linear regression as neural net

Graphical representation) =a+y fyen
p=1
* Parameters are arrows

« Arrows ending in a node
are summed together

* Intercept is not drawn

Linear regression as neural net

Neural network jargon FAI =B+ wyny
p=1

« Parameter = weight

* Intercept = bias

Single layer neural networks

Input Hidden Output
Layer Layer Layer
Aq
. /
Ao
X \

Single layer neural networks
y=f(X)+ €

Specify a layer with K hidden units called A

K

fX)=pBo+ br Ay

k=1
Where

P
Ay =hX) =g (ﬁk + szlwpkxp>

Single layer neural networks

« What about the function g(-)?
* This is called the activation function

e A transformation of the linear combination of
predictors

he(X) =g (ﬁk + szlwpkxp>

Activation functions

Linear: g(x) = x Sigmoid: g(x) = 1+i—x
ReLu: g(x) = max(0, x) e Rectified linear (ReLu) is

most popular nowadays

« Nonlinearity necessary!
Otherwise: just a linear

regression

Activation functions

We can go wider
« More hidden units -> more transformations of input

Universal function approximation theorem

Any “well-behaved” function can be represented by neural net
of sufficient width with nonlinear activation functions

https://miro.medium.com/max/1400/1*YDS2pY--VzdsrmWPoBLlIOw.gif

Feed-forward neural networks

Input Hidden Output
Layer Layer Layer
Aq
. /
Ao
X \

Feed-forward neural networks

We can go deeper
« More hidden layers after one another
« Higher-order features composed of lower-order features

Universal function approximation theorem, version 2

Any “well-behaved” function can be represented by neural net
of sufficient depth with nonlinear activation functions

Feed-forward neural networks

Input
layer

Hidden

Hidden

layer Lo Stk
utpu
layer

fo(X)— Yo

{ Y

Jfo(X)— Yo

Feed-forward neural networks

Feed-forward network -
architecture defined by:

* Number of layers

 Number of hidden units
In each layer

 Activation function for
each layer

e Activation function for
output layer

Keras!

library(keras)

model dff <-
keras_model_sequential() |>
layer flatten(input_shape = c(28, 28)) |>
layer_dense(units = 256, activation = "relu") |>
layer_dense(units = 128, activation = "relu") |>
layer _dense(10, activation = "softmax")

Keras!

summary(model_dff)

Layer (type) Output Shape Param #
dense_1 (Dense) ~ (Nome, 256) 200960
dense_2 (Dense) ~ (Nome, 128) 32896
dense_3 (Dense) ~ (Nome, 100 1290

Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0

How to estimate parameters?

Estimating parameters

* We need some way to measure how well the network does
« Parameters that make the network perform well are good!

- Remember ML estimation: finding § maximizing p(y|6)

- Remember OLS estimation: finding 8 minimizing (v —X,BA)2
« Same for neural nets;: we minimize some loss function L(6)

Loss function

* For continuous outcomes you can use squared error
L(6) = (f(X;;0) — y;)?

* For binary outcomes you can use binary cross-entropy

L(8) = —(y;log(f(X;0)) + (1 — y) log(f(X;; 0)))

Loss function

« What do the parameters need to be to minimize loss?

« We don’t know this!

« But we might know the direction in which we need to move to
Increase the loss

* This direction is called the gradient

0
9(8) = Vo= =5 1(6)

e (Looks scary, but it's just a number for each parameter)

Gradient descent

Iteration: step of size 1 in the direction of the negative gradient

Let’s try it out with a simple example!
« L(O) =6% -0+ 0.25

« g(0) =26 -1

e A =0.25

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

—

Theta: 0.75; Gradient: 0.5

theta

Theta: 1.5; Gradient: 2

2.0

1.5

1.0

0.5

0.0

theta
Theta: 0.625; Gradient: 0.25

2.0

1.5

1.0

0.5

0.0

Theta: 1; Gradient: 1

2.0

1.5

1.0

0.5

0.0 4

theta
Theta: 0.5625; Gradient: 0.125

Stochastic gradient descent

* Instead of computing the gradients w.r.t. the entire
loss function, only use a random batch of data

* Take a step after each batch
« Common batch sizes: 32, 64, 128, 256, 512

* One look at the full data =1 epoch

Stochastic gradient descent

» (full-)batch mode: where the batch size is equal to the
total dataset thus making the iteration and epoch values
equivalent

- mini-batch mode: where the batch size is greater than
one but less than the total dataset size. Usually, a number
that can be divided into the total dataset size.

- stochastic mode: where the batch size is equal to one.
Therefore, the gradient and the neural network
parameters are updated after each sample.

https://ai.stackexchange.com/questions/8560/how-do-i-choose-the-optimal-batch-size

Gradient computation

« But in neural networks, how do we compute gradients?
« We have functions of functions!
 Software like tensorflow / Keras / torch does this for you!

- Backpropagation: smart repeated use of the chain rule to compute
derivatives

dz dz dy
de dy dz’

» Software also implements gradient descent (and friends)

Programming pattern: estimation

model _dff |>
compile(
loss = "sparse_categorical _crossentropy",
optimizer = "adam"

)

model _dff |>
fit(
X X,
y =Y,
batch_size = 32,
epochs = 10
)

Conclusion: estimation

 We need a loss function (e.g., squared error)

 We need gradients (how to change 6 to reduce L(6))
« Gradient descent: take steps in direction of -gradient
« Stochastic GD: do this with data batches

- Software handles all of this (black box!!)

« Advantage: we can focus on the architecture

Break

Image processing with
convolutional neural networks

Prediction for MNIST

Each example has:

« 28*28 = 784 input features
» Values between 0-255 (8 bit)
« Usually normalized to be 0-1
« 1= black, 0 = white, 0.5 = grey

* 10 outcome categories (0-9) 9‘_

—

« One-hot encoding for outcome
* (cool way to say dummy coding)

*1=0100000000
*5=0000010000

/
3
4
A4

What is a convolution

 Convolution is applying a kernel (filter) over an image

» The kernel (filter) defines which feature is important in the
image

What is a convolution

a b ¢

. o ld e f

Original Image = g b

J kL

Now consider a 2 x 2 filter of the form

. . a [
Convolution Filter = [] .

Y0

When we convolve the image with the filter, we get the result®

ao + DB+ dy+ed ba+ceB+ey+ [
Convolved Image = |da+eB+ gy + hd ea+ fB+ hy+ 10

ga+hB+jy+kS ha+iB+ky+15

What is a convolution

https://github.com/vdumoulin/conv_arithmetic

https://setosa.io/ev/image-Rernels/

https://setosa.io/ev/image-kernels/

Convolution layers

e A convolutional neural
network is a NN with one or
more convolution layers

* The parameters / weights in
a convolution layer are the
elements of the filter

* The filter is learnt by the
network!

32

convolve

FIGURE 10.8. Architectu
Conwvolution layers are inte
size by a factor of 2 in botl

Convolution layers

* In each convolution layer,
you can create multiple
filters

 Number of parameters is
function of:
» Number of filters (e.g. 6)
» Size of each filter (e.g. 2x2)
« NOT the input dimension!

- Parameter sharing

32

convolve

FIGURE 10.8. Architectu
Conwvolution layers are inte
size by a factor of 2 in botl

Pooling layer

« Convolution layers are
usually followed by a
pooling layer

« Reduces dimensionality

* Location invariance:
Robustness against pixel
shift / small rotations

* Max pool most common

32

convolve

FIGURE 10.8. Architecture of a de
Conwvolution layers are interspersed 1
size by a factor of 2 wn both dimensic

Pooling layer

I 2 5 3

3 0 1 2

0

2

1

Max pool

Architecture of a CNN

convolve

FIGURE 10.8. Architecture of a deep CNN for the CIFAR100 classification task.
Conwvolution layers are interspersed with 2 X 2 max-pool layers, which reduce the
size by a factor of 2 wn both dimensions.

Applying CNN to MNIST

model _cnn <-
keras_model_sequential(input_shape = c(28, 28, 1)) |>
layer_conv_2d(6, c(5, 5)) |>
layer_max_pooling 2d(pool _size = c(4, 4)) |>
layer flatten() |>
layer_dense(units = 32, activation "relu") |>

"softmax")

layer_dense(10, activation

Model summary

summary(model_cnn)

Layer (type) Output Shape Param #

nax_pooling2d 2 (Maxpooling20) (None, 6,6, 6 o
flatten3 (Fatten) (ore, 2160 o
dense s (pense) (ore, 320 oows
dense7 (demse) (Nore, 10 300

Total params: 7,430
Trainable params: 7,430

Non-trainable params: 0

Compare to DFF model

summary(model_dff)

Layer (type) Output Shape Param #
dense_1 (Dense) (Nome, 256) 200960
dense_2 (Dense) (None, 128) 32896
dense_3 (Dense) (None, 100 1299

Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0

Applying CNN to MNIST

model_cnn [>

compile(
loss = "sparse_categorical _crossentropy",
optimizer = "adam"

)

model _cnn [>

fit(
X = mnist$train$x,
y = mnist$trainsy,

epochs = 10,
validation_split = 0.2,
verbose = 2

Performance comparison: DFF

pred
obs

0

@ 975 0
0 1129

1

1

0 1015 2
6 991
2

0

4

0
0 952

10

16

0

A

0 869

2

4 942 0
0 1004
1

0

3

6

4 946

3

1 991

Performance comparison: CNN

pred
obs

0

0 971 0
0 1126
1

1

2
1 1020

0

1

2 997 0
0 970
3

1

10

0
0 881

5

3

0
0 994

2 941
2

1

3

A
6 989

2 956

2

Performance comparison: CNN

accuracy
sum(diag(cmat_dff)) / sum(cmat_dff)

#> [1] 0.9814
sum(diag(cmat_cnn)) / sum(cmat_cnn)

#> [1] 0.9845

What about the features?

Unboxing the black box

* Extract the weights of the convolution layer to find the
features (filters) that were learnt

« Apply the filters to some example images to get an
Idea of which features are discriminative for the
different numbers

SNZ2BEETHE
O0RQ 0 EEdl
HRY =S B
/M / ViAW

Cool hack: pretrained CNNs

Download the convolutional layer weights from existing neural
network trained on many images

Apply them to your own images

Result: a feature vector per image

Use these feature vectors as input dataset for:
» Deep feedforward neural network
 Logistic regression
« Support vector machine

* This can work really well!!

Conclusion: CNN

» Convolution = applying kernels (filters) over an image

* CNNs employ convolution layers
« Parameter sharing
* Feature detection

* Followed by pooling layers
* location invariance

* (Was) state-of-the art in image recognition
« Use pretrained networks as a quick proxy

Battling the curse of dimensionality

Regularization in NNs

« We may have thousands or even millions of
parameters

 How can we avoid overfitting?
* How can we fight the curse of dimensionality?

* NNs are not magic: we need regularization.

« Regularization is anything which introduces bias in the
parameters to improve generalization (Goodfellow et al.,

2016)

Regularization in NNs

 Convolution: parameters are set to be equal to one another in
different areas of image (parameter sharing)

* L1or L2 penalty applied to weights is common in neural
networks (keras can do it!)

 Dropout regularization: In each iteration, only update a
subset of the parameters

- Early stopping: Do not train for many epochs, but only until
validation set loss does not improve

- Data augmentation: Add shifted / rotated versions of images
to input (upside-down tiger is still a tiger!)

Conclusion

* Introduction to neural networks

* Feed-forward neural networks
 Estimation / optimization

e Convolutional neural networks

* Battling the curse of dimensionality

Epilogue: neural network zoo

Neural network zoo

*You can see how far we got:
Perceptron (nonlinear regression

e There is much more ©

-~eed forward
Deep feed forward

Deep convolutional network

A mostly complete chart o

® o Neural Ne

© Backfed Input Cell ©2019 Flodor van Veen & Stefan Le}

ovinstitute.org

/A Noisy Input Cell

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)
@ ridden cell - '

o T

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM,
[~ [o) (]

. Probablistic Hidden Cell
. Spiking Hidden Cell
. Capsule Cell

. Output Cell

@ Matchinput Output Cell

. Recurrent Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

. Memory Cell o
WA

. Gated Memory Cell

BNy
o S0
erne O
© Convolution or Pool o
Markov Chain (MC) Hopfield Network (HN) ~ Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)
@]
< @)
, PSR SR SRy)
X\ ARV X7\
S . S, A A
9 I 0. %, %
o =
o
Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Netwark (DCIGN)
X o< e - NN
>< o \O/ >< \O/ \O/
a .\-o/ ~ 2" % \o -O/ ~
@ \o-/w\- 4" % '\O g NP
- ~ET . ~ET gy~
X o X0 o2

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

5 A

)
»,
i

Deep Residual Network (DRN) Differentiable Neural Computer (DNC) Meural Turing Machine (NTM)
. o o Qo .
v,

Capsule Network (CN)
Attention Network (AN)

421 &l

'|X|§<|X|>{|'

B N
\ B/

This was just the start

* Recurrent neural networks: for sequences (like text!)
» Autoencoders (nonlinear dimension reduction)

« Generative adversarial networks
https://thispersondoesnotexist.com/

» Transformers (engine behind ChatGPT!)

* Look at https://www.asimovinstitute.org/neural-
network-zoo/

https://thispersondoesnotexist.com/
https://www.asimovinstitute.org/neural-network-zoo/
https://www.asimovinstitute.org/neural-network-zoo/

Practical this Friday: image recognition
with Keras inR

Run the take-home part of the
assignment.

	Slide 1
	Slide 2: Last weeks
	Slide 3: Today
	Slide 4: Introduction
	Slide 5: Why should we learn this?
	Slide 6
	Slide 7
	Slide 8
	Slide 9: So what is a neural network?
	Slide 10: Neural networks
	Slide 11: Linear regression as neural net
	Slide 12: Linear regression as neural net
	Slide 13: Single layer neural networks
	Slide 14: Single layer neural networks
	Slide 15: Single layer neural networks
	Slide 16: Activation functions
	Slide 17: Activation functions
	Slide 18
	Slide 19: Feed-forward neural networks
	Slide 20: Feed-forward neural networks
	Slide 21: Feed-forward neural networks
	Slide 22: Feed-forward neural networks
	Slide 23: Keras!
	Slide 24: Keras!
	Slide 25: How to estimate parameters?
	Slide 26: Estimating parameters
	Slide 27: Loss function
	Slide 28: Loss function
	Slide 29: Gradient descent
	Slide 30
	Slide 31: Stochastic gradient descent
	Slide 32: Stochastic gradient descent
	Slide 33: Gradient computation
	Slide 34
	Slide 35: Programming pattern: estimation
	Slide 36: Conclusion: estimation
	Slide 37: Break
	Slide 38: Image processing with convolutional neural networks
	Slide 39: Prediction for MNIST
	Slide 40: What is a convolution
	Slide 41: What is a convolution
	Slide 42: What is a convolution
	Slide 43
	Slide 44: Convolution layers
	Slide 45: Convolution layers
	Slide 46: Pooling layer
	Slide 47: Pooling layer
	Slide 48: Architecture of a CNN
	Slide 49: Applying CNN to MNIST
	Slide 50: Model summary
	Slide 51: Compare to DFF model
	Slide 52: Applying CNN to MNIST
	Slide 53: Performance comparison: DFF
	Slide 54: Performance comparison: CNN
	Slide 55: Performance comparison: CNN
	Slide 56: What about the features?
	Slide 57
	Slide 58
	Slide 59: Cool hack: pretrained CNNs
	Slide 60: Conclusion: CNN
	Slide 61: Battling the curse of dimensionality
	Slide 62: Regularization in NNs
	Slide 63: Regularization in NNs
	Slide 64: Conclusion
	Slide 65: Epilogue: neural network zoo
	Slide 66: Neural network zoo
	Slide 67: This was just the start
	Slide 68: Practical this Friday: image recognition with Keras in R

