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Overview

I Introduction

I Dissimilarity

I Clustering algorithms (K-means, Gaussian mixtures, K-medoids)

I Selection of the number of clusters

I Hierarchical clustering

I Practical issues
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Introduction

Research question

Are there a few different unknown subgroups of cases or clusters?

Examples
I Can different types of cancer be distinguished based on tumor stage, tumor grade, and gene

expressions?

I Are there clusters of consumers who might be more receptive to a particular form of
advertising?
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Introduction

Goals

I Grouping or segmenting a collection of cases into subsets or ‘clusters,’ such that those within
each cluster are more similar than cases assigned to different clusters

I Arranging clusters into a natural hierarchy

I To form descriptive statistics to ascertain whether or not the data consist of a number of
distinct subgroups
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Introduction

Goals

Based on the features x1, . . . , xp, the cases are partitioned into a (pre-specified) number of clusters
→ the number K

The feature data matrix

X =


x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

...
xN1 xN2 . . . xNp

= [ x1 x2 . . . xN ]T

Based on xi = [xi1 . . . xip ]T each case i ∈ {1, . . . , N} is assigned to only one cluster, that is,

C(i) = k, where k ∈ {1, . . . ,K}

Usually, K is much smaller than N
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Introduction

Goals

Example
i xi1 xi2

1 2.38 4.78
2 3.48 5.90
3 2.04 4.70
4 2.88 5.19
5 3.67 6.04
6 2.76 4.63
7 2.45 5.08
8 2.35 5.02
9 3.00 4.71

10 3.26 4.88
11 3.54 5.68
12 2.35 4.85
13 1.96 4.96
14 2.65 5.19
15 2.13 4.79
16 2.72 5.14
17 2.93 4.48
18 2.36 3.46
19 3.51 4.73
20 2.90 4.84
21 4.85 4.70
22 4.07 3.13
23 4.03 3.90

i xi1 xi2

24 5.23 4.66
25 3.83 3.71
26 4.33 4.24
27 3.61 3.51
28 3.69 3.85
29 3.63 3.65
30 3.87 4.06
31 4.77 4.70
32 3.88 4.31
33 4.48 4.54
34 3.66 3.75
35 4.07 3.82
36 3.43 3.65
37 4.77 3.99
38 3.73 4.16
39 3.97 3.96
40 3.97 4.27
41 3.59 3.27
42 3.89 4.96
43 3.82 3.60
44 4.27 4.23
45 3.74 3.50
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Introduction

Goals

Example (continued)

x1
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N = 45
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Introduction

Goals

Example (continued)

x1

x2

N = 45

K = 2
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Introduction

Goals

Example (continued)

x1

x2

N = 45

K = 3
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Dissimilarity

Proximity matrices

Data → directly in terms of the proximity between any two cases

The N ×N proximity (dissimilarity) matrix

D =


d11 d12 . . . d1N

d21 d22 . . . d2N

...
...

dN1 dN2 . . . dNN


where dii′ is the proximity between cases i and i′

Usually dii = 0, for all i

If the (dis)similarities between cases are subjectively judged, then D might not be symmetric and
is replaced by (D + DT )/2
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Dissimilarity

Proximity matrices

If dii′ ≤ dil + di′l does not hold for all i, i′, and l, then algorithms that assume distance cannot be
used

l

i i′

dil

dii′

di′l
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Dissimilarity

Dissimilarities based on attributes

Most often a dissimilarity between cases i and i′ is constructed on the basis of

xi = [xi1 . . . xip ]T and xi′ = [xi′1 . . . xi′p ]T

The dissimilarity dii′ between cases i and i′ is then defined as

D(xi,xi′) =

p∑
j=1

dj(xij , xi′j)

where dj(xij , xi′j) is the dissimilarity between cases i and i′ on the jth feature
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Dissimilarity

Dissimilarities based on attributes

In the case of quantitative features, the most common choice is the squared distance

dj(xij , xi′j) = (xij − xi′j)2

Another choice is the absolute difference

dj(xij , xi′j) = |xij − xi′j |

Alternatively, clustering can be based on the correlation

r(xi,xi′) =

∑
j(xij − x̄i)(xi′j − x̄i′)√∑

j(xij − x̄i)2
∑

j(xi′j − x̄i′)2

where x̄i =
∑

j xij/p and x̄i′ =
∑

j xi′j/p
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Dissimilarity

Dissimilarities based on attributes

In the case of ordinal features, the assigned values xij ∈ {1, . . . ,Mj} can be transformed using

xij − 1/2

Mj

and then treated as quantitative

In the case of nominal features, a popular choice is

dj(xij , xi′j) =

{
0, if xij = xi′j

1, if xij 6= xi′j

However, latent class analysis is probably more suitable for categorical variables
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Dissimilarity

Case (object) dissimilarity

A more general measure of case dissimilarity is the weighted average

D(xi,xi′) =

p∑
j=1

wjdj(xij , xi′j)

where
p∑

j=1

wj = 1 and the choice of the weight wj should be based on subject matter considerations

Setting wj = 1 or wj = 1/p, for all j, does not necessarily give all features equal influence in
characterizing overall dissimilarity between cases
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Dissimilarity

Case (object) dissimilarity

The average case dissimilarity over all pairs of cases is

D̄ =
1

N2

N∑
i=1

N∑
i′=1

D(xi,xi′)

=
1

N2

N∑
i=1

N∑
i′=1

p∑
j=1

wjdj(xij , xi′j)

=

p∑
j=1

wj
1

N2

N∑
i=1

N∑
i′=1

dj(xij , xi′j)

=

p∑
j=1

wj d̄j

where d̄j is the average case dissimilarity on the jth feature
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Dissimilarity

Case (object) dissimilarity

The relative influence of the jth feature is wj d̄j

Setting wj = 1/d̄j , where

d̄j =
1

N2

N∑
i=1

N∑
i′=1

dj(xij , xi′j)

gives all attributes equal influence in characterizing overall dissimilarity between cases (often
recommended but can be highly counterproductive)
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Dissimilarity

Object dissimilarity

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 14
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FIGURE 14.5. Simulated data: on the left, K-means
clustering (with K=2) has been applied to the raw data.
The two colors indicate the cluster memberships. On
the right, the features were first standardized before
clustering. This is equivalent to using feature weights
1/[2 · var(Xj)]. The standardization has obscured the
two well-separated groups. Note that each plot uses the
same units in the horizontal and vertical axes.
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Clustering algorithms

Combinatorial algorithms

The total point scatter does not depend on K and is given by

T =
1

2

N∑
i=1

N∑
i′=1

D(xi,xi′) = W (C) +B(C)

where

W (C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

D(xi,xi′)

is the within-cluster point scatter, and

B(C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)6=k

D(xi,xi′)

is the between-cluster point scatter

W (C) is minimized (or equivalently B(C) is maximized) over all possible assignments of the N
data points to K clusters
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Clustering algorithms

Combinatorial algorithms

Unfortunately, combinatorial optimization by complete enumeration is feasible only for very small
data sets

The total number of distinct assignments of N cases to K clusters is

S(N,K) =
1

K!

K∑
k=1

(−1)K−k
(
K

k

)
kN

Note that S(10, 4) = 34, 105 and S(19, 4) ≈ 1010

Practically feasible strategies are based on iterative greedy descent

I An initial partition is specified

I At each iteration, the assignment of data points to clusters is improved
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Clustering algorithms

K-means clustering

The squared Euclidean distance

D(xi,xi′) =

p∑
j=1

(xij − xi′j)2

is chosen as the case dissimilarity measure

The within-cluster point scatter

W (C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

D(xi,xi′) =

K∑
k=1

Nk

∑
C(i)=k

squared Euclidean dis-
tance to centroid x̄k︷ ︸︸ ︷

p∑
j=1

(xij − x̄kj)2

where Nk is the number of observations assigned to cluster k, is minimized

The centroid of cluster k is x̄k = [ x̄k1 x̄k2 . . . x̄kp ]T
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Clustering algorithms

K-means clustering

(x11, x12) (x21, x22)

(x31, x32)
(x41, x42)

(x51, x52)

(x61, x62)

(x71, x72)

(x81, x82)

Scatter plot
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Clustering algorithms

K-means clustering

(x11, x12) (x21, x22)
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(x61, x62)

(x71, x72)

(x81, x82)

(x̄1, x̄2)

(x̄1, x̄2) is the centroid
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Clustering algorithms

K-means clustering
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Clustering algorithms

K-means clustering

(x11, x12) (x21, x22)
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(x61, x62)

(x71, x72)

(x81, x82)

(x̄1, x̄2)

Euclidean distance between (x71, x72) and (x̄1, x̄2) is
√

(x71 − x̄1)2 + (x72 − x̄2)2
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Clustering algorithms

K-means clustering

The most popular iterative descent algorithm

Assignment procedure

1. A random number, from 1 to K, is assigned to each of the observations

2. Iteratively

(a) cluster centroids are computed: x̄k = (x̄k1, . . . , x̄kp), for k = 1, . . . ,K

(b) each observation is assigned to the cluster whose centroid is closest

until the cluster assignments stop changing

Since the result might be a suboptimal local minimum

→ the algorithm should be started with many random cluster assignments
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Clustering algorithms

K-means clustering

Simulated data with N = 150, two features, and different values of K

K=2 K=3 K=4
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Clustering algorithms

K-means clustering

Because the algorithm finds a local rather than a global minimum, the results depend on the initial
random cluster assignment

320.9 235.8 235.8

235.8 235.8 310.9
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Clustering algorithms

Gaussian mixtures as soft K-means clustering
Model based clustering

The Gaussian mixture model

The multivariate density of x = (x1, . . . , xp) is

g(x) =

K∑
k=1

πk · n(x;µk,Σk)

where πk is a mixing probability, n(x;µk,Σk) is a multivariate normal density, µk is the mean
vector, and Σk is the covariance matrix, for cluster k

The maximum likelihood estimates of µ1, . . . ,µK and Σ1, . . . ,ΣK are the values that maximize
the log-likelihood function

l(µ1, . . . ,µK ,Σ1, . . . ,ΣK) =

N∑
i=1

ln

{
K∑

k=1

πk · n(xi;µk,Σk)

}
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Clustering algorithms

Gaussian mixtures as soft K-means clustering

EM algorithm for obtaining the maximum likelihood estimates

1. Take initial guesses for µ1, . . . ,µK and Σ1, . . . ,ΣK

2. Expectation step: compute a provisional estimate of the responsibility

γik = Pr(Ci = k |xi) =
πkn(xi;µk,Σk)

K∑
k=1

πkn(xi;µk,Σk)

, for all i and k

3. Maximization step: compute provisional estimates of

µk =

N∑
i=1

γikxi

N∑
i=1

γik

, Σk =

N∑
i=1

γik(xi − µk)(xi − µk)T

N∑
i=1

γik

, and πk =

N∑
i=1

γik/N

for all k

4. Iterate steps 2 and 3 until convergence
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Clustering algorithms

Gaussian mixtures as soft K-means clustering

Suppose K mixture components, each with a multivariate Gaussian density having (scalar)
covariance matrix

Σk = σ2I =


σ2

0 σ2

...
. . .

0 0 . . . σ2


In this setup, the EM algorithm is a ‘soft’ version of the K-means algorithm, making probabilistic
assignments of observations to clusters

As σ2 → 0, each responsibility becomes either 0 or 1, and the two methods coincide
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Clustering algorithms

Gaussian mixtures as soft K-means clustering

Example (continued)
i γ̂i1 γ̂i2 k

1 1.000 0.000 1
2 1.000 0.000 1
3 1.000 0.000 1
4 1.000 0.000 1
5 1.000 0.000 1
6 1.000 0.000 1
7 1.000 0.000 1
8 1.000 0.000 1
9 0.999 0.001 1

10 0.998 0.002 1
11 1.000 0.000 1
12 1.000 0.000 1
13 1.000 0.000 1
14 1.000 0.000 1
15 1.000 0.000 1
16 1.000 0.000 1
17 0.986 0.014 1
18 0.026 0.974 2
19 0.852 0.148 1
20 1.000 0.000 1
21 0.000 1.000 2
22 0.000 1.000 2
23 0.000 1.000 2

i γ̂i1 γ̂i2 k

24 0.000 1.000 2
25 0.000 1.000 2
26 0.000 1.000 2
27 0.000 1.000 2
28 0.000 1.000 2
29 0.000 1.000 2
30 0.000 1.000 2
31 0.000 1.000 2
32 0.001 0.999 2
33 0.000 1.000 2
34 0.000 1.000 2
35 0.000 1.000 2
36 0.000 1.000 2
37 0.000 1.000 2
38 0.000 1.000 2
39 0.000 1.000 2
40 0.000 1.000 2
41 0.000 1.000 2
42 0.751 0.249 1
43 0.000 1.000 2
44 0.000 1.000 2
45 0.000 1.000 2
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Clustering algorithms

Gaussian mixtures as soft K-means clustering

Example (continued)
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Clustering algorithms

Gaussian mixtures as soft K-means clustering

Example (continued)
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Clustering algorithms

Gaussian mixtures as soft K-means clustering

Example (continued)
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Clustering algorithms

K-medoids

Disadvantages of the K-means algorithm

I the features are required to be of the quantitative type

I squared Euclidean distance places the highest influence on the largest distances → not robust
against outliers

Instead of the centroids, the K-medoids algorithm chooses cases as centers and minimizes the
dissimilarity between cases labeled to be in a cluster and the case designated as the center of that
cluster

It is more robust to noise and outliers as compared to K-means because it minimizes a sum of
pairwise dissimilarities

A medoid can be defined as the case of a cluster whose average dissimilarity to all the cases in the
cluster is minimal
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Selection of the number of clusters

I The within-cluster point scatter or dissimilarity WK can be plotted as a function of the
number of clusters K

There will be a sharp decrease in WK −WK+1 at K = K∗, where K∗ is the true number of
clusters

An estimate for K∗ is obtained by identifying a ‘kink’ in the plot of WK as a function of K

I The optimal number of cluster is the place where the gap between the curve logWK and the
curve obtained from data uniformly distributed over a rectangle containing the data, is largest
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Selection of the number of clusters

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 14

Number of Clusters
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FIGURE 14.11. (Left panel): observed (green) and
expected (blue) values of log WK for the simulated data
of Figure 14.4. Both curves have been translated to
equal zero at one cluster. (Right panel): Gap curve,
equal to the difference between the observed and ex-
pected values of log WK . The Gap estimate K∗ is the
smallest K producing a gap within one standard devi-
ation of the gap at K + 1; here K∗ = 2.
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Hierarchical clustering

Bottom-up or agglomerative clustering

Iteratively

1. dissimilarities are measured between each two clusters (the initial observations are also seen as
clusters)

2. the two clusters that are most similar to each other are fused to form a new cluster

until all the observations belong to one single cluster

Advantages

I Does not require the pre-specification of the number of clusters

I It provides a dendogram (a tree-based representation of the observations)
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Hierarchical clustering

A usual measure of dissimilarity is Euclidean distance

How is dissimilarity defined between clusters?

Linkage Description

Complete Maximal pairwise intercluster dissimilarity
Furthest-neighbor
→ violates the ‘closeness’ property

Single Minimal pairwise intercluster dissimilarity
Nearest-neighbor
→ violates the ‘compactness’ property (chaining)

Average Mean pairwise intercluster dissimilarity

Centroid Centroid dissimilarity
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Hierarchical clustering

Simulated data with N = 45, two features, and three classes
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Hierarchical clustering
Dendograms for the 45 simulated observations, 2 features, and 3 classes
Complete linkage and Euclidean distance
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Hierarchical clustering
Average Linkage Complete Linkage Single Linkage
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Practical issues

I Should the features be standardized?

I In the case of hierarchical clustering,
- What dissimilarity measure should be used?
- What type of linkage should be used?
- Where should we cut the dendogram in order to obtain clusters?

I In the case of K-means clustering, how many clusters should we look for in the data?

In practice, several choices should be tried, and the one with the most useful or interpretable
solution should be selected
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