Model-based clustering
Gaussian mixture models
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Last week

* Hierarchical clustering

« K-means clustering

« Assessing cluster solutions
« Stability
* Internal metrics
 External validation



Today

* Model-based clustering

« Maximum likelihood estimation

« EM algorithm

« Multivariate model-based clustering
« Assumptions & restrictions

 Goal: understand, apply, and assess model-based
clustering methods



Reading materials

« Mixture models: latent profile and
latent class analysis (Oberski, 2016)
http://daob.nl/wp-
content/papercite-
data/pdf/oberski2016mixturemode | E——_G_GG—_—_—G_GGG
l S. D d f‘ T. Brendan Murphy and Adrian E. Raftery

e MBCC sections 2.1 and 2.2



http://daob.nl/wp-content/papercite-data/pdf/oberski2016mixturemodels.pdf

Model-based clustering



K-means again

1. Assign examples to K clusters

2. a. Calculate K cluster
centroids;

b. Assign examples to cluster
with closest centroid;

3. If assignments changed, back
to step 2a; else stop.
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K-means again

« K-means is based on a rule

« Why this rule and not some other rule?

« What kind of data does the rule work well for?
 In what situations would the rule fail?

« What happens if we want to change the rule?

All difficult to answer by staring at the algorithm.



K-means with euclidian distance
2_

K-means again

« k-means algorithm makes " . A
clusters which are circular in R -
the space of the data. . : N

* Is this reasonable? .
 Maybe x and y covary within | «&¢

waiting

—_

the clusters, in the same way &% . °
or even differently? EL

* Maybe we need ellipses?

eruptions



Model-based clustering

Steps:

1. Pretend we believe in some statistical model that describes
data as belonging to unobserved (“latent”) groups;

2. Estimate (“train”) this model using the data.

The rule follows from the model!
* Instead of worrying about algorithm, we worry about model.
 Earlier mentioned questions are easier to answer.



Model-based clustering

« Assumptions about the clusters are explicit, not implicit.
« We will look at the most used family of models:

Gaussian mixture models (GMMs)
» Data within each cluster (multivariate) normally distributed.

« Parameters can be either the same or different across groups:
 Volume (size of the clusters in data space);
* Shape (circle or ellipse);
- Orientation (the angle of the ellipse).



Model-based clustering

Another major advantage

* For each observation, get a posterior probability of
belonging to each cluster

 Reflects that cluster membership Is uncertain

* Cluster assignment can be done based on the highest
probability cluster for each observation



Model-based clustering

Remember silhouette?

- q; = avg. distance to
fellow cluster
members (cohesion) : , .
- b; = min. distance to ’ Gaet C afee
member from

different cluster T ]
(Se p a ratl O n ) | | | S.ilhouette -Coefficieélt | | |
Figure 7.29. Silhouette coefficients for points in ten clusters.
(b — a;)

S; =
l max(ai, bl) Introduction to
data mining



Model-based clustering

Specific examples of model-based clustering:

« Gaussian mixture models

* Latent profile analysis

- Latent class analysis (categorical observations)
 Latent Dirichlet allocation



Gaussian mixture modelling

| | | | | | | | | | | | | |
1.4 1.5 1.6 1.7 1.8 1.9 2.0 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Height (meters) Height (meters)

Fig. 1 Peoples’ height. Left: observed distribution. Right: men and women separate, with the total
shown as a dotted line.



Model-based clustering

e Statistical model + assumptions defines a likelihood:

p(data | parameters) = p(y | 0)

« Maximum likelihood estimation: find the parameters 8 for which
It Is most likely to observe this data

» This is how models can be estimated / fit / trained

« NB: the model and its assumptions are debatable!



Model-based clustering

Likelihood (density) for height data:

p(height | ) =
Pr(man)Normal(Ugn, Oman) + -
Pr(woman)Normal(Uyoman Owoman)  F—~_ """

Or, in clearer notation:

p(height | ) =

3 Normal(uy, 0y) + | | | '

1.4 1.5 1.6 1.7
(1 — n{)Normal(u,, 0,)
Height (meters)

1.8

1.9

2.0



Model-based clustering

Gaussian mixture parameters:

- 75 determines the relative cluster sizes
* Proportion of observations to be expected in each cluster

* uy and u, determine the locations of the clusters
* Like centroids in k-means clustering

* 07 and o0, determine the volume of the clusters
* how large / spread out the clusters are in data space

Together, these 5 unknown parameters describe our model of how the
data is generated.



Estimation: the EM algorithm

If we know who is a man and who is a woman, it's easy to find
the maximum likelihood estimates for 1 and o:

. _ Zijheight; %2, (height; — )2
lu'l N1 ) 1 V Nl _ 1

But we don't know this!

-> Assignments need to be estimated too.



Estimation: the EM algorithm

* Solution: Figure out the posterior probability of being a
man/woman, given the current estimates of the means and

sds

« If we know cluster locations and shapes,

how likely iIs it that a 1.7m person is
a man or a woman?

¥y 220

R |
Tman = 566 ~ 0.77 1.4

1.5 1.6 1.7 1.8 1.9 2.0

Height (meters)



Estimation: the EM algorithm

« Now we have some class assignments (probabilities);

« SO we can go back to the parameters and update them using
our easy rule (M-step)

» Then, we can compute new posterior probabilities (E-step)

Does it remind you of something...?



Estimation: the EM algorithm

(0) Guess the parameters

v

(1) Work out posterior of being M/F
(@assuming normality)

C )

(2) Update the parameters

Stop when parameters stop changing



Live coding EM



Break



Multivariate model-based
clustering



Multivariate model-based
clustering

 With 2 observed features:
e mean becomes a vector of 2 means

e standard deviation turns into a 2x2 variance-covariance matrix
determining the shape of the cluster

« So we have multiple within-cluster parameters:
« TWO means
« Two variances, one for each observed variable
« A single covariance among the features

* Together, the 11 parameters define the likelihood in bivariate
space, which from the top looks like ellipses



Multivariate normal distribution

L3
Normal(x; u,o ) = e 2\ °

o\ 2T

1 1

MVN(x; i, 0) = det(2n%) 2 ¢ 20#) 7 xm)



Multivariate model-based

clustering
p(y]60) = my MVN(uq,Z1) + (1 - ﬂf)MVN(ﬂz:zz)




Estimation: the EM algorithm
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Multivariate model-based
clustering

» Cluster shape parameters (the variance-covariance matrix)
can be constrained to be equal across clusters
« Same as k-means

e Can also be different across clusters
* not possible in k-means

* More flexible, complex model
* Think about the bias-variance tradeoff!



TOP SECRET SLIDE

« K-means clustering is a GMM with the following model:
o All prior class proportions are 1/K
 Ell model: equal volume, only circles
 All posterior probabilities are either 0 or 1



TOP SECRET SLIDE 2

« GMM has trouble with clusters that are not ellipses
* Secret weapon: merging

Powerful idea:
e Start with Gaussian mixture solution

* Merge “similar” components to create non-Gaussian clusters

NB: we're distinguishing “components” from “clusters” now



Merging

library(mclust)
out <- Mclust(x)

com <-
clustCombi(out)

plot(com)

Toy dataset 'moons'
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1.0

0.5

0.0

-0.5

Combined solution with 7 clusters




V2

1.0

0.5

0.0

-0.5

Combined solution with 4 clusters




V2

1.0

0.5

0.0

-0.5

Combined solution with 2 clusters

-1.0

-05 00 05 1.0 1.5




Assessing clustering results

Methods to assess whether the obtained clusters are “good”:

* Model fit



Model fit

How well does the model fit to the data?
Log-likelihood

N N
£(0) = logp(y|0) = logﬂp(anH) — Z logp(yn|0)

The higher the log-likelihood, the more likely the data (if we
assume this model is correct)

Deviance
—2-£(0) (lower deviance is better)



Information criteria

Deviance forms the basis of information criteria, which balance
fit and complexity

Akaike information criterion
AIC = —2£(8) + 2k

(where k is the number of parameters)

Bayesian information criterion
BIC = —-2¢(0) + klogn

(where n is the number of rows in your data)



Information criteria

Think: bias and variance tradeoff!
« Variance also has to do with stability

Better fit & lower complexity = better cluster solution

(other assessment methods also available for model-based
clustering)



High-dim!



How to do GMM in high dimensions?

« Same solution as we are used to by now!
« Perform clustering on dimension reduction version of original data

* Integrate regularization / dimension reduction in your GMM
optimization method

 Bouveyron et al. (2007) High-dimensional data clustering;
Computational Statistics & Data Analysis 52, 502 — 519
* The second solution
« Akin to “mixtures of probabilistic PCA”



C. Bouveyron et al. / Computational Statistics & Data Analysis 52 (2007) 502519 317

Fig. 8. Characterization of the Martian surface composition using HDDC: on the left, image of the studied zone and, on the right, segmentation using
HDDC on the 256-dimensional spectral data associated to the image.
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Model-based clustering in R



Model-based clustering in R

* Mclust implements multivariate model-based clustering

* Provides an easy interface to fit several parameterizations
« Model comparison with BIC

* Plotting functionality



Model-based clustering in R

« Mclust uses an identifier for each possible parametrization of
the cluster shape: E for equal, V for variable in:
* Volume (size of the clusters in data space)
- Shape (circle or ellipse)
- Orientation (the angle of the ellipse)

« So an EEE model has equal volume, shape and orientation
« AVVV model has variable volume, shape, and orientation

« AVVE model has variable volume and shape but equal
orientation



Model-based clustering in R

Equal volume, shape, orientation Variable volume, shape, orientation
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Model-based clustering in R

« How Mclust optimizes
hyperparameters:

* Fit all the models with up to
9 clusters (or more, your
choice!)

« Compute the BIC of each
model

 Choose the model with the
lowest BIC

VVV, 3 clusters
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Practical: perform model-based

clustering
Take-home exercises: 1-11



Questions?
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