Time series analysis
and forecasting

Erik-Jan van Kesteren
(based on materials by Rob Hyndman & Oisin Ryan)



Welcome back!



Before the break

« Regularization, high-dimensional data
* Dimension reduction

* Deep learning

* Clustering



After the break

* Time series (today)

* Text mining & natural language processing
(taught by Ayoub Bagheri)

« Deadline assignment 2: next week Friday at 11:00!

 Final exam: February 2, 14:00 - 16:00
Example questions can be found on infomda2.nl



Last week

« MNIST digit recognition
* Feed forward neural networks
e Convolutional neural networks

* Keras
 Curse of dimensionality exists there too!



Today

* Time series & forecasting

» Nonparametric decomposition of timeseries (STL)
« Autocorrelation & partial autocorrelation

» Autoregression-based models (SARIMA)

* Model selection & generalization
* Fable package



Time series & Forecasting



What is a time series?
Repeated measures from a single unit



Time series data

* The daily price of oil since 1960
e Annual deaths in the Netherlands for 100 years

e Maximum temperature per day/month/year for a
period of one year/decade/century

 Daily measures of your happiness for 60 days

Typically, a time series Is a vector of numbers.



G @ r/dataisbeautiful - Posted by u/tkpkid 2 days ago /3

23k [0C] I've been keeping a daily journal and rating each day on a scale from

1-10 since 2013. Here is a moving average of my happiness over the past
10 years

ocC

Life Ratings Over Time (2013-2022)
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Ansett airlines economy class
Melbourne-Sydney
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Figure 2.1: Weekly economy passenger load on Ansett Airlines.
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Australian antidiabetic drug sales
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Figure 2.2: Monthly sales of antidiabetic drugs in Australia.
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Time series data

ansett |>
filter(
InR Week > yearweek("1990-01-01"),
) . Alrports == "MEL—%YD",
* tsibble object type ) %ass == "Economy
* It's a tibble, with special autoplot(Passengers)

“Index” column

« Makes It easy to work
with times and dates

* (also by default groups
by index)

1990IW01 1991IW01 1992IW01 1992IW
Week [1W]



Time series analysis

Time series data for wide range of research questions

« Econometrics, seismology, meteorology, control
engineering, signal processing ...

Time series analysis often focuses on the task of
forecasting

 Forward / future predictions
e Goal: learn a model from data that forecasts well



Forecasts for quarterly beer production
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Figure 5.7: Forecasts of Australian quarterly beer production.



Time series analysis

Basic problem

How to best use the past of a time series to make predictions
about the future?

Many different methods
« Simple / naive
« Nonparametric
« Auto-regressive
« Complicated Bayesian state-space models

Most of these decompose time-series into components



Time series analysis

Basic problem

How to best use the past of a time series to make predictions
about the future?

Many different methods
« Simple / naive
- Nonparametric
 Auto-regressive
« Complicated Bayesian state-space models

Most of these decompose time-series into components



Why not just Im(y ~ f(t))?

Regression SARIMA
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Why not just Im(y ~ f(t))?

SARIMA

Why is SARIMA better?
* No sudden jump
* Slight downward trend 5
* Looks more like recent \/\MN\
observations B ot
/' SARIMA

« Uncertainty increases
as we forecast further
away (!!!) [I)1Q1 199Cl)Q1 200(l)Q1 201(I)Q1 2026 Q1

ter



Decomposing time series



STL decomposition

« Seasonal and Trend decomposition using Loess

 Use nonparametric regression to decompose time
series Into:
e Season
* Trend
 Remainder



LOESS

 For each point x;,

weighted regression using
nearby data points

weights « f(distance)

* Hyperparameters

li T T T T
0 25 50 75 100

« maximum distance
 regression model type
« Weighing function

https://evalf22.classes.andrewheiss.com/slides/10-slides.html



https://evalf22.classes.andrewheiss.com/slides/10-slides.html

STL decomposition
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STL decomposition

STL decomposition
Employed = trend + season_year + remainder
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STL decomposition

Need to perform model selection
* How wiggly i1s my trend?

« How stable is my seasonality effect?



STL decomposition

STL decomposition

Employed = trend + season_year + remainder
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STL decomposition

After finding a good model, you can

* Produce seasonally adjusted estimates (national
statistical agencies tend to output these)
e y2¢ = trend; + €;
* Create forecasts
*Yipq1 = trends,q + seasong 1 + €r41



Seasonal adjustment

Total employment in US retail
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Forecast

US retail employment
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Auto-regressive models



Yi = fi(T) + f2(5) + f3(Yi—q, ..., Vi) + €

e Deterministic trend T
* Ice cream brand is becoming popular so sales go up

* Seasonal effects S
* Ice cream sales are higher in summer than in winter

 Past values of our process of interest:
auto-correlation structure
« Conditional on T and S, my best guess of sales in August is
sales in July

« Random / noise / residual / innovation / shock ¢,



Autoregressive model selection

Traditional view: Box-Jenkins method (1970)
We should aim to obtain a model which explains all
serial dependency present in the data.

Non-traditional view: Data Science® method™

We should aim to obtain a model which creates good
out-of-sample forecasts



Autoregressive model selection

Serial dependency: all statistical dependency
between current and past values of the time-
series

* Errors of the regression model ¢, should contain
no information about future observations
« Why? If it did, we could improve our forecasts

« To check: the residuals should be white noise (i.e.
uncorrelated over time)



Box-Jenkins method

* Check for trends and seasonal components. Remove
them If present.

« Choose order / lag of autocorrelation part of model

* Estimate parameters / fit your model
« Check If your residuals are white noise!



Break



Box-Jenkins method

* Check for trends and seasonal components. Remove
them If present.

 Choose order / lag of autocorrelation part of model
* Estimate parameters / fit your model
« Check If your residuals are white noise!



Choosing AR terms
Vi = f1(T) + f2(5) + f3(Ye—q, ., Yics) + &

*Should current Y be predicted by
*Y an hour ago
*Y two hours ago?
* Three hours ago?
* 24 hours ago?

« What lag should we consider?



Choosing AR terms

AR(1) model:
Ve =C+ Qye_q + €

AR(2) model:
Vi =C+ P1Yi—1 + P2Y:c—2 + €



Diagnostic tools

Autocorrelation function

Correlation between lagged version of our variable y, and y,_,

Partial autocorrelation function

Partial correlation between y, and y,_,, controlling for
Intermediate observations y,_; t0 y;_s.41.
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Yt = O1Yi—1 + P2yi—2 + €

Second-order AR process
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Box-Jenkins method

* Check for trends and seasonal components. Remove
them If present.

« Choose order / lag of autocorrelation part of model

- Estimate parameters / fit your model
« Check If your residuals are white noise!



Lags in design matrix

To estimate AR(2) model in base R;
tmCy ~ lag(y, 1) + lag(y, 2))

Yt Yt-1 Yt-2
Y1

Y2 Y1

Y3 Y2 Y1
B! Y3 Y2
Ys Y4 Y3
yr YT-1 Yr-2

vt Yr-1
yr




Box-Jenkins method

* Check for trends and seasonal components. Remove
them If present.

« Choose order / lag of autocorrelation part of model
* Estimate parameters / fit your model
* Check if your residuals are white noise!



arrival_data |> model(ARIMA(Arrivals)) |> gg_tsresiduals()
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Moving Average terms



Moving average terms

AR
Current value y, I1s dependent on y,_,

MA
Current value y, I1s dependent on €,_,
Dependency on past shock terms

MA(1) model:

Ve =Ct €+ 064



I

Example with 6; =0.9:

First—-order MA process
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Example with 6, =0.7 and 6, = —0.9:

Second-order MA process Series MA2 Series MA2 Correlation of 0.03
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AR / MA interpretation

Granger and Morris (1976):

* An AR process Is a momentum effect in a random
variable that varies smoothly over time

« A MA process Is a variable in equilibrium, which is
perturbed by random shocks with delayed effects



ARMA

ARMA(1, 1) model:
Ve =C+ Qyr—1 + € + 064

ARMA(p,q) models are basic building block of many
different time-series techniques.

But: crucial assumption when building ARMA models Is
stationarity, something we have ignored until now



Stationarity

In order to choose appropriate ARMA model for data,
we need our time-series to be stationary

Definition:

A stationary time series Is one whose statistical
properties do not depend on the time at which the
series Is observed.

FPP3, section 9.1



Stationarity

Stationary processes are those for which the mean,
variance, and auto-correlation structure stay the same
over our window of observation.

Implication
« Lagged regression parameters stay fixed across waves
« Otherwise ARMA is impossible to estimate!



(a) Google closing price (b) Change in google price (c) Strikes: US
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Achieving stationarity

- Differencing: ARIMA(p, d, g) models
* Essentially: difference the data to obtain stationarity

(a) Google closing price (b) Change in google price
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Day Day

* Doesn’t "remove" any information, since the
differencing is accounted for when making forecasts



Achieving stationarity

 Basic idea: Even If we have explosive growth, the
relationship between current values and change in
values Is constant over time

« Model selection challenge: still need to select the
appropriate order of differencing

ARlMA(1, 1, 0) model;
Vi —Vi-1 = C+ PYi_q + €



Achieving stationarity

 Using differencing, you can also account for
seasonality

* This gets complicated quickly, because you need to
back-transform i1t as well

« Combination of normal and seasonal differencing
« 2nd 3rd grder differencing

» Luckily, fable (R package) does all of this for us



Model serial (auto-) + Trends + Seasonal Effects

correlation



SARIMA modeling in fable



US retail employment data
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SARIMA modeling in fable

# regular ARIMA pdg and seasonal PDQ
frm <- Employed ~ pdq(3, @, 1) + PDQ(1, 1, 1)

# estimate model
mod <- model(us_retail_employment, ARIMA(frm))

# check residuals
mod |> gg_tsresiduals()



SARIMA modeling in fable

Innovation residuals
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SARIMA modeling in fable

## create and plot the forecasts

mod |>
forecast(h = 60) |> # 60 months ahead
autoplot(us_retail_employment)



SARIMA modeling in fable
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Other topics in time series models



Other topics

« How to do cross-validation
* (1?) can we even do cross-validation?

« deep autoregression / neural networks
« Causal impact analysis



“cross”-validation
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“cross”-validation




Deep auto-regressive models

Neural networks can also be used for forecasting
models

* In fable: NNAR(p, k)
*pis lag and k is number of hidden neurons

« Same benefits as all NN: non-linear relations



Deep auto-regressive models
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https://ml.berkeley.edu/blog/posts/AR_intro/



Causal impact

To assess the impact of an event or intervention:
- effect of marketing campaign on sales
- effect of primary school intervention on student results

Steps:

* Train a good forecasting model on pre-intervention data
- Make a forecast for post-intervention data

« Compare forecast to observed post-intervention data



The Annals of Applied Statistics

2015, Vol. 9, No. 1, 247-274

DOI: 10.1214/14-A0AS788

© Institute of Mathematical Statistics, 2015

INFERRING CAUSAL IMPACT USING BAYESIAN STRUCTURAL
TIME-SERIES MODELS

By KAY H. BRODERSEN, FABIAN GALLUSSER, JIM KOEHLER,
NICOLAS REMY AND STEVEN L. SCOTT

Google, Inc.

An important problem in econometrics and marketing is to infer the
causal impact that a designed market intervention has exerted on an out-
come metric over time. This paper proposes to infer causal impact on the
basis of a diffusion-regression state-space model that predicts the counter-
factual market response in a synthetic control that would have occurred had
no intervention taken place. In contrast to classical difference-in-differences
schemes, state-space models make it possible to (i) infer the temporal evo-
lution of attributable impact, (i1) incorporate empirical priors on the param-
eters in a fullv Bavesian treatment. and (111) flexiblv accommodate multinle



Causal impact

 causalimpact R package
* Developed at Google in 2015

 Uses “Bayesian Structural Time Series”
 Essentially, ARIMA model with some extra fanciness



W, Elon Musk @ @elonmusk - 1h v
Tesla stock price is too high imo

Q 6.2K 11 87K Q) 59k Ty

Elvis ™
@TradeLikeElvis

Replying to @elonmusk

Dude...| just lost $10k because of this tweet. Witf is
wrong with u

10:18 AM - May 1, 2020 - Twitter for Android

104 Retweets 1.3K Likes

O [ O qy

https://www.alexpghayes.com/post/2020-05-01_elon-musk-send-tweet/
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