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and forecasting



Welcome back!



Before the break
• Regularization, high-dimensional data
• Dimension reduction
• Deep learning
• Clustering



After the break
• Time series (today)
• Text mining & natural language processing

(taught by Ayoub Bagheri)

• Deadline assignment 2: next week Friday at 11:00!

• Final exam: February 2, 14:00 – 16:00
Example questions can be found on infomda2.nl



Last week
• MNIST digit recognition
• Feed forward neural networks
• Convolutional neural networks
• Keras
• Curse of dimensionality exists there too!



Today
• Time series & forecasting
• Nonparametric decomposition of timeseries (STL)
• Autocorrelation & partial autocorrelation
• Autoregression-based models (SARIMA)

• Model selection & generalization
• Fable package



Time series & Forecasting



What is a time series?
Repeated measures from a single unit



Time series data
• The daily price of oil since 1960

• Annual deaths in the Netherlands for 100 years

• Maximum temperature per day/month/year for a 
period of one year/decade/century

• Daily measures of your happiness for 60 days

Typically, a time series is a vector of numbers.





Figure 2.1: Weekly economy passenger load on Ansett Airlines. 



Figure 2.2: Monthly sales of antidiabetic drugs in Australia. 



Time series data
In R

• tsibble object type

• It’s a tibble, with special 
“index” column

• Makes it easy to work 
with times and dates

• (also by default groups 
by index)

ansett |> 
  filter(
    Week > yearweek("1990-01-01"),
    Airports == "MEL-SYD", 
    Class == "Economy"
  ) |> 
  autoplot(Passengers)



Time series analysis
Time series data for wide range of research questions

• Econometrics, seismology, meteorology, control 
engineering, signal processing …

Time series analysis often focuses on the task of 
forecasting

• Forward / future predictions

• Goal: learn a model from data that forecasts well



Figure 5.7: Forecasts of Australian quarterly beer production. 



Time series analysis
Basic problem
How to best use the past of a time series to make predictions 
about the future?

Many different methods
• Simple / naive
• Nonparametric
• Auto-regressive
• Complicated Bayesian state-space models

Most of these decompose time-series into components
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Why not just lm(y ~ f(t))?



Why not just lm(y ~ f(t))?
Why is SARIMA better?

• No sudden jump

• Slight downward trend

• Looks more like recent 
observations

• Uncertainty increases 
as we forecast further 
away (!!!)



Decomposing time series



STL decomposition
• Seasonal and Trend decomposition using Loess

• Use nonparametric regression to decompose time 
series into:
• Season
• Trend
• Remainder



LOESS
• For each point 𝑥𝑖, 

weighted regression using 
nearby data points

weights ∝ 𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

• Hyperparameters
• maximum distance
• regression model type
• Weighing function

https://evalf22.classes.andrewheiss.com/slides/10-slides.html  

https://evalf22.classes.andrewheiss.com/slides/10-slides.html


STL decomposition



STL decomposition



STL decomposition
Need to perform model selection

• How wiggly is my trend?

• How stable is my seasonality effect?



STL decomposition



STL decomposition
After finding a good model, you can

• Produce seasonally adjusted estimates (national 
statistical agencies tend to output these)
• 𝑦𝑡

𝑠𝑎 = 𝑡𝑟𝑒𝑛𝑑𝑡 + 𝜖𝑡

• Create forecasts
• Ƹ𝑦𝑡+1 = 𝑡𝑟𝑒𝑛𝑑𝑡+1 + 𝑠𝑒𝑎𝑠𝑜𝑛𝑡+1 + 𝜖𝑡+1



Seasonal adjustment



Forecast



Auto-regressive models



𝑌𝑡 = 𝑓1 𝑇 + 𝑓2 𝑆 + 𝑓3 𝑌𝑡−1, … , 𝑌𝑡−𝑠 + 𝜖𝑡

• Deterministic trend 𝑇
• Ice cream brand is becoming popular so sales go up

• Seasonal effects 𝑆
• Ice cream sales are higher in summer than in winter

• Past values of our process of interest: 
auto-correlation structure
• Conditional on 𝑇 and 𝑆, my best guess of sales in August is 

sales in July

• Random / noise / residual / innovation / shock 𝜖𝑡



Autoregressive model selection
Traditional view: Box-Jenkins method (1970)
We should aim to obtain a model which explains all 
serial dependency present in the data.

Non-traditional view: Data Science® method
We should aim to obtain a model which creates good 
out-of-sample forecasts



Autoregressive model selection
•Serial dependency: all statistical dependency 
between current and past values of the time-
series
•Errors of the regression model 𝜖𝑡 should contain 
no information about future observations
• Why? If it did, we could improve our forecasts
• To check: the residuals should be white noise (i.e. 

uncorrelated over time)



Box-Jenkins method
• Check for trends and seasonal components. Remove 

them if present. 
• Choose order / lag of autocorrelation part of model
• Estimate parameters / fit your model
• Check if your residuals are white noise!



Break
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Choosing AR terms
𝑌𝑡 = 𝑓1 𝑇 + 𝑓2 𝑆 + 𝑓3 𝑌𝑡−1, … , 𝑌𝑡−𝑠 + 𝜖𝑡

•Should current Y be predicted by 
• Y an hour ago
• Y two hours ago? 
• Three hours ago? 
• 24 hours ago?

•What lag should we consider?



Choosing AR terms
AR(1) model:

𝑦𝑡 = 𝑐 + 𝜙𝑦𝑡−1 + 𝜖𝑡

AR(2) model:
𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜖𝑡



Diagnostic tools
Autocorrelation function
Correlation between lagged version of our variable 𝑦𝑡 and 𝑦𝑡−𝑘

Partial autocorrelation function
Partial correlation between 𝑦𝑡 and 𝑦𝑡−𝑘, controlling for 
intermediate observations 𝑦𝑡−1 to 𝑦𝑡−𝑘+1. 







Box-Jenkins method
• Check for trends and seasonal components. Remove 

them if present. 
• Choose order / lag of autocorrelation part of model
• Estimate parameters / fit your model
• Check if your residuals are white noise!



𝑦𝑡 𝑦𝑡−1 𝑦𝑡−2

𝑦1

𝑦2 𝑦1

𝑦3 𝑦2 𝑦1

𝑦4 𝑦3 𝑦2

𝑦5 𝑦4 𝑦3

… … …

𝑦𝑇 𝑦𝑇−1 𝑦𝑇−2

𝑦𝑇 𝑦𝑇−1

𝑦𝑇

Lags in design matrix
To estimate AR(2) model in base R:
lm(y ~ lag(y, 1) + lag(y, 2))



Box-Jenkins method
• Check for trends and seasonal components. Remove 

them if present. 
• Choose order / lag of autocorrelation part of model
• Estimate parameters / fit your model
• Check if your residuals are white noise!



arrival_data |> model(ARIMA(Arrivals)) |> gg_tsresiduals()



Moving Average terms



Moving average terms
AR
Current value 𝑦𝑡 is dependent on 𝑦𝑡−𝑘

MA
Current value 𝑦𝑡 is dependent on 𝜖𝑡−𝑘
Dependency on past shock terms

MA(1) model:
𝑦𝑡 = 𝑐 + 𝜖𝑡 + 𝜃𝜖𝑡−1







AR / MA interpretation
Granger and Morris (1976):

• An AR process is a momentum effect in a random 
variable that varies smoothly over time

• A MA process is a variable in equilibrium, which is 
perturbed by random shocks with delayed effects



ARMA
ARMA(1, 1) model:

𝑦𝑡 = 𝑐 + 𝜙𝑦𝑡−1 + 𝜖𝑡 + 𝜃𝜖𝑡−1

ARMA(p,q) models are basic building block of many 
different time-series techniques.

But: crucial assumption when building ARMA models is 
stationarity, something we have ignored until now



Stationarity
In order to choose appropriate ARMA model for data, 
we need our time-series to be stationary

Definition:
A stationary time series is one whose statistical 
properties do not depend on the time at which the 
series is observed.

FPP3, section 9.1



Stationarity
Stationary processes are those for which the mean, 
variance, and auto-correlation structure stay the same 
over our window of observation.

Implication
• Lagged regression parameters stay fixed across waves
• Otherwise ARMA is impossible to estimate!





Achieving stationarity
• Differencing: ARIMA(p, d, q) models 
• Essentially: difference the data to obtain stationarity

• Doesn’t "remove" any information, since the 
differencing is accounted for when making forecasts



Achieving stationarity
• Basic idea: Even if we have explosive growth, the 

relationship between current values and change in 
values is constant over time

• Model selection challenge: still need to select the 
appropriate order of differencing

ARIMA(1, 1, 0) model:
𝑦𝑡 − 𝑦𝑡−1 = 𝑐 + 𝜙𝑦𝑡−1 + 𝜖𝑡



Achieving stationarity
• Using differencing, you can also account for 

seasonality
• This gets complicated quickly, because you need to 

back-transform it as well
• Combination of normal and seasonal differencing
• 2nd, 3rd order differencing

• Luckily, fable (R package) does all of this for us





SARIMA modeling in fable



US retail employment data



SARIMA modeling in fable
# regular ARIMA pdq and seasonal PDQ
frm <- Employed ~ pdq(3, 0, 1) + PDQ(1, 1, 1)

# estimate model
mod <- model(us_retail_employment, ARIMA(frm))

# check residuals
mod |> gg_tsresiduals()



SARIMA modeling in fable



SARIMA modeling in fable
# create and plot the forecasts
mod |>
forecast(h = 60) |> # 60 months ahead
autoplot(us_retail_employment)



SARIMA modeling in fable



Other topics in time series models



Other topics
• How to do cross-validation 

• (!?) can we even do cross-validation?

• deep autoregression / neural networks
• Causal impact analysis



“cross”-validation



“cross”-validation



Deep auto-regressive models
Neural networks can also be used for forecasting 
models
• In fable: NNAR(p, k) 
• p is lag and k is number of hidden neurons
• Same benefits as all NN: non-linear relations



Deep auto-regressive models

https://ml.berkeley.edu/blog/posts/AR_intro/



Causal impact
To assess the impact of an event or intervention:
• effect of marketing campaign on sales
• effect of primary school intervention on student results

Steps:
• Train a good forecasting model on pre-intervention data
• Make a forecast for post-intervention data
• Compare forecast to observed post-intervention data





Causal impact
• causalimpact R package
• Developed at Google in 2015
• Uses “Bayesian Structural Time Series”

• Essentially, ARIMA model with some extra fanciness



https://www.alexpghayes.com/post/2020-05-01_elon-musk-send-tweet/



https://www.alexpghayes.com/post/2020-05-01_elon-musk-send-tweet/
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