
Text Mining 2

Ayoub Bagheri

Word Embedding & Recurrent Neural 
Networks



Last week
• Text mining
• Pre-processing text data
• Vector space model

• Bag-of-words

• Topic modeling
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Today
• Word embedding

• Skipgram learning
• Pre-trained embeddings

• Recurrent neural networks
• LSTM
• Extensions

• State-of-the-art
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Word Embedding
Slides are partly based on the word embedding lecture by Dong Nguyen in the 

Applied Text Mining Utrecht summer school (linkToRCourse, linkToPythonCouse)
&

And partly from chapter 6 of Speech and Language Processing (3rd ed. draft), 
Dan Jurafsky and James H. Martin

https://web.stanford.edu/~jurafsky/slp3/

https://utrechtsummerschool.nl/courses/social-sciences/data-science-introduction-to-text-mining-with-r
https://utrechtsummerschool.nl/courses/social-sciences/data-science-applied-text-mining


Word representations
How can we represent the meaning of words?

So, we can ask:
• How similar is cat to dog, or Paris to London?
• How similar is document A to document B?
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Word as vectors
Can we represent words as vectors?
The vector representations should:

• capture semantics
▪ similar words should be close to each other in the 

vector space
▪ relation between two vectors should reflect the 

relationship between the two words
• be efficient (vectors with fewer dimensions are easier to 

work with)
• be interpretable

6



Word as vectors

How similar are the following two words? (not similar 0–10 very similar)

smart and intelligent:
easy and big:
easy and difficult:
hard and difficult:
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Word as vectors

How similar are the following two words? (not similar 0–10 very similar)

smart and intelligent: 9.20
easy and big:               1.12
easy and difficult:       0.58
hard and difficult:       8.77

(SimLex-999 dataset, https://fh295.github.io/simlex.html)
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Words as Vectors



One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID

10 / 56



One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID

What are limitations
of one-hot encodings?
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One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID

Even related words
have distinct vectors!

High number of
dimensions
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Distributional hypothesis: Words that 
occur in similar contexts tend to have 
similar meanings.

You shall know a word by the company it keeps.
(Firth, J. R. 1957:11)
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Word vectors based on co-occurrences

documents as context
word-document matrix
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Word vectors based on co-occurrences

documents as context
word-document matrix

neighboring words as context
word-word matrix
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Word vectors based on co-occurrences

There are many variants:
• Context (words, documents, which window size, etc.)
• Weighting (raw frequency, etc.)

Vectors are sparse: Many zero entries.
Therefore: Dimensionality reduction is often used (e.g., SVD)

These methods are sometimes called count-based methods as 
they work directly on co-occurrence counts.
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Word embeddings
• Vectors are short; 

typically 50-1024 
dimensions ☺
• Vectors are dense

(mostly non-zero values)
• Very effective for many

NLP tasks ☺
• Individual dimensions

are less interpretable 
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How do we learn word embeddings?



Learning word embeddings
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Learning word embeddings
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Training data for word embeddings

• Use text itself as training data for the model!
• A form of self-supervision.

• Train a classifier (neural network, logistic regression, 
or SVM, etc.) to predict the next word given previous 
words.
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Exercise: Word prediction task

Yesterday I went to the ?

A new study has highlighted the positive ?

Which word comes next?

22



Word2Vec

• Popular embedding method
• Very fast to train
• Idea: predict rather than count

• https://projector.tensorflow.org/

23

https://projector.tensorflow.org/


Word2Vec

We have target words (cat) and context words (here: 
window size = 5).
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Word2Vec

• Instead of counting how often each word w occurs near a 
target word
• Train a classifier on a binary prediction task:

• Is w likely to show up near target?

• We don’t actually care about this task
• But we'll take the learned classifier weights as the word embeddings

• Big idea: self-supervision
• A word c that occurs near target in the corpus as the gold "correct 

answer" for supervised learning
• No need for human labels
• Bengio et al. (2003); Collobert et al. (2011)

25



Word2Vec algorithms
Continuous Bag-Of-Words (CBOW)

26



Word2Vec algorithms
Continuous Bag-Of-Words (CBOW) skipgram
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Skipgram overview
The domestic cat is a small, typically furry carnivorous mammal

1. Create examples
• Positive examples: Target word and

neighboring context
• Negative examples: Target word and

randomly sampled words from the
lexicon (negative sampling)

2. Train a logistic regression model
to distinguish between the positive
and negative examples

3. The resulting weights are the
embeddings!

Embedding vectors are essentially
a byproduct!
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Skipgram

We have target words (cat) and context words (here: window size = 5).

The probability that c is a real context word, and the probability that c is 
not a real context word:
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Skipgram

Similarity is computed from dot product
• Intuition: A word c is likely to occur near the target w if its embedding is 

similar to the target embedding.

• Two vectors are similar if they have a high dot product
• Cosine similarity is just a normalized dot product

Turn this into a probability using 
the sigmoid function:
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How Skipgram classifier computes P(+|w, c) 

This is for one context word, but we have lots of context words. 
We'll assume independence and just multiply them:
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Word2vec: how to learn vectors

• Given the set of positive and negative training 
instances, and an initial set of embedding vectors

• The goal of learning is to adjust those word vectors 
such that we:

• Maximize the similarity of the target word, context 
word pairs (w , cpos) drawn from the positive data

• Minimize the similarity of the (w , cneg) pairs drawn 
from the negative data.
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Loss function for one w with cpos , cneg1 ...cnegk

• Maximize the similarity of the target with the actual context words, and 
minimize the similarity of the target with the k negative sampled non-
neighbor words.
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Learning the classifier

• How to learn?
• Stochastic gradient descent!
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Skipgram embeddings

target words

context words
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Learning the classifier

• How to learn?
• Stochastic gradient descent!

• SGNS learns two sets of embeddings
• Target embeddings matrix W
• Context embedding matrix C

• It's common to just add them together, representing 
word i as the vector Wi + Ci
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Skipgram classifier

• A probabilistic classifier, given
• a test target word w
• its context window of L words c1:L

• Estimates probability that w occurs in this window based on 
similarity of w (embeddings) to c1:L (embeddings).

• To compute this, we just need embeddings for all the words.
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Pre-trained Embeddings



Pre-trained embeddings

• I want to build a system to solve a task (e.g., 
sentiment analysis)
• Use pre-trained embeddings. Should I fine-tune?

• Lots of data: yes
• Just a small dataset: no

• Analysis (e.g., bias, semantic change)
• Train embeddings from scratch
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Word embedding in R



GloVe embedding in R
library(text2vec)
# https://www.rdocumentation.org/packages/text2vec/versions/0.5.1/topics/GlobalVectors

glove <- GlobalVectors$new(word_vectors_size, vocabulary, x_max, learning_rate = 0.15,
alpha = 0.75, lambda = 0.0, shuffle = FALSE, initial = NULL)

# target word vectors
# x is the input data, a term co-occurence matrix. 
wv_main <- glove$fit_transform(x, n_iter = 10L, convergence_tol = -1, n_check_convergence = 1L,

n_threads = RcppParallel::defaultNumThreads())
# context word vectors
wv_context <- glove$components

# we can also use their summation
word_vectors <- shakes_wv_main + t(shakes_wv_context)
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Layer embedding in keras
layer_embedding(input_dim = max_words, output_dim = dim_size, 

input_length = maxlen,
# put weights into list and do not allow training
weights = list(word_embeds), trainable = FALSE)

https://www.rdocumentation.org/packages/keras/versions/2.7.0/topics/layer_embedding
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Recurrent Neural Network
(RNN)



Recurrent Neural Network

• Another famous architecture of Deep Learning
• Preferred algorithm for sequential data 

• time series, speech, text, financial data, audio, video, 
weather and much more.

• text: sentiment analysis, sequence labeling, speech 
tagging, machine translation, etc.

• Maintains internal memory, thus can remember its 
previous inputs
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Simple recurrent network
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Simple recurrent network
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Training RNNs

• RNNs can be trained using “backpropagation through time.”
• Can viewed as applying normal backprop to the unrolled 

network.
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The problem of Vanishing Gradient

• Consider a RNN model for a machine translation task from English to 
Dutch.

• It has to read an English sentence, store as much information as 
possible in its hidden activations, and output a Dutch sentence. 

• The information about the first word in the sentence doesn’t get used 
in the predictions until it starts generating Dutch words. 

• There’s a long temporal gap from when it sees an input to when it uses 
that to make a prediction. 

• It can be hard to learn long-distance dependencies. 
• In order to adjust the input-to-hidden weights based on the first input, 

the error signal needs to travel backwards through this entire pathway.
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Vanishing / Exploding gradient

• Vanishing gradient: the term goes to zero 
exponentially fast, which makes it difficult to learn 
some long period dependencies.

• Exploding gradient: the term goes to infinity 
exponentially fast, and their value becomes a NaN due 
to the unstable process.
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Long Short-Term Memory 
(LSTM)



Long Short-Term Memory

• Prevents vanishing/exploding gradient problem by:
• introducing a gating mechanism
• turning multiplication into addition

• Designed to make it easy to remember information over long 
time periods until it’s needed.

• The activations of a network correspond to short-term 
memory, while the weights correspond to long-term memory.
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LSTM architecture

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 52

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Extensions

• Bi-directional network: separate LSTMs process forward and 
backward sequences, and hidden layers at each time step are 
concatenated to form the cell output.

• Gated Recurrent Unit (GRU): alternative RNN to LSTM that uses 
fewer gates, combines forget and input gates into “update” 
gate, eliminates cell state vector.

• Attention: Allows network to learn to attend to different parts 
of the input at different time steps, shifting its attention to 
focus on different aspects during its processing.
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State-of-the-art
• Transformers
• Contextual embeddings
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Conclusion
• tf-idf

• Information Retrieval workhorse!
• A common baseline model
• Sparse vectors
• Words are represented by (a simple function of) the counts 

of nearby words

• Word2vec
• Dense vectors
• Representation is created by training a classifier to predict 

whether a word is likely to appear nearby
• RNN, topic modeling, …
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Practical
Word embedding with GloVe and Keras



Exam
• Friday, February 4th at 9:00
• On location
• Bring your own laptop
• BBG 083

• Buys Ballot building: https://www.uu.nl/en/buys-ballot-building

57

https://www.uu.nl/en/buys-ballot-building


Questions?



Skipgram

1. Treat the target word t and a neighboring context 
word c as positive examples.

2. Randomly sample other words in the lexicon to get 
negative examples

3. Use logistic regression to train a classifier to 
distinguish those two cases

4. Use the learned weights as the embeddings
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RNN

https://towardsdatascience.com/the-exploding-and-
vanishing-gradients-problem-in-time-series-6b87d558d22
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Backpropagation 
Through Time

https://towardsdatascience.com/the-exploding-and-
vanishing-gradients-problem-in-time-series-6b87d558d22
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