
Natural Language Processing

Qixiang Fang
Based on Ayoub Bagheri’s slides

Word Embedding, Recurrent Neural
Networks & Transformers

Last week
• Text mining
• Pre-processing text data
• Vector space model
• Topic modeling

2

Today
• Natural language processing
• Word embedding

• Skipgram learning
• Pre-trained embeddings

• Recurrent neural networks
• LSTM
• Extensions

• State-of-the-Art: Transformers

3

Natural Language Processing
(NLP)

NLP vs text mining
• Natural language processing, or NLP, is a research

field dedicated to giving machines the ability to
manipulate natural languages (Bird, Klein, & Loper,
2009).

• Text mining focuses on application and pattern
learning

5

Word Embedding

Slides are partly based on the word embedding lecture by Dong Nguyen in the Applied Text Mining Utrecht summer school
(linkToRCourse, linkToPythonCouse)

&
And partly from chapter 6 of Speech and Language Processing (3rd ed. draft), Dan Jurafsky and James H. Martin

https://web.stanford.edu/~jurafsky/slp3/

https://utrechtsummerschool.nl/courses/social-sciences/data-science-introduction-to-text-mining-with-r
https://utrechtsummerschool.nl/courses/social-sciences/data-science-applied-text-mining

Word representations
How can we represent the meaning of words?

So, we can ask:
• How similar is cat to dog, or Paris to London?
• How similar is document A to document B?

7

Word as vectors
Can we represent words as vectors?
The vector representations should:

• capture semantics
▪ similar words should be close to each other in the

vector space
▪ relation between two vectors should reflect the

relationship between the two words
• be efficient (vectors with fewer dimensions are easier to

work with)
• be interpretable

8

Word as vectors

How similar are the following two words? (not similar 0–10 very similar)

smart and intelligent:
easy and big:
easy and difficult:
hard and difficult:

9

Word as vectors

How similar are the following two words? (not similar 0–10 very similar)

smart and intelligent: 9.20
easy and big: 1.12
easy and difficult: 0.58
hard and difficult: 8.77

(SimLex-999 dataset, https://fh295.github.io/simlex.html)

10

https://fh295.github.io/simlex.html

Words as Vectors

One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID

12 / 56

One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID

What are limitations
of one-hot encodings?

13

One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID

Even related words
have distinct vectors!

High number of
dimensions

14

Distributional hypothesis: Words that
occur in similar contexts tend to have
similar meanings.

“You shall know a word by the company it keeps.”
(Firth, J. R. 1957:11)

15

Word vectors based on co-occurrences

documents as context
word-document matrix

16

Word vectors based on co-occurrences

documents as context
word-document matrix

neighboring words as context
word-word matrix

17

Word vectors based on co-occurrences

There are many variants:
• Context (words, documents, which window size, etc.)
• Weighting (relative frequency, etc.)

Vectors are sparse: Many zero entries.
Therefore: Dimensionality reduction is often used (e.g., SVD)

These methods are sometimes called count-based methods as
they work directly on co-occurrence counts.

18

Word embeddings are better!
• Vectors are short;
 typically 50-1024
 dimensions ☺
• Vectors are dense
 (mostly non-zero values)
• Very effective for many
 NLP tasks ☺
• Individual dimensions
 are less interpretable

19

How do we learn word embeddings?

Learning word embeddings

21

Learning word embeddings

22 / 56

Word2Vec

• Popular embedding method
• Very fast to train
• Idea: predict rather than count

• https://projector.tensorflow.org/

23

https://projector.tensorflow.org/

Word2Vec

We have target words (cat) and context words (here:
window size = 5).

24

Word2Vec

• Instead of counting how often each word occurs near a target
word
• Train a classifier on a binary prediction task:

• Is a word likely to show up near the target word?

• We don’t actually care about this task
• But we'll take the learned classifier weights as the word embeddings

• Main idea: self-supervision
• A word that occurs near the target word in the corpus as the gold

"correct answer" for supervised learning
• No need for human labels
• Bengio et al. (2003); Collobert et al. (2011)

25

Word2Vec algorithms
Continuous Bag-Of-Words (CBOW)

26

Word2Vec algorithms
Continuous Bag-Of-Words (CBOW) skipgram

27

Skipgram overview
The domestic cat is a small, typically furry carnivorous mammal

1. Create examples
• Positive examples: Target word and
 neighboring context
• Negative examples: Target word and
 randomly sampled words from the
 lexicon (negative sampling)

2. Train a two-layered neural network
 to distinguish between the positive
 and negative examples
3. The resulting weights are the
 embeddings!

Embedding vectors are essentially
a byproduct!

28

Skipgram

We have target words (cat) and context words (here: window size = 5).

The probability that c is a real context word, and the probability that c is
not a real context word:

29

Skipgram

Similarity is computed from dot product
• Intuition: A word c is likely to occur near the target w if its embedding is

similar to the target embedding.

• Two vectors are similar if they have a high dot product
• Cosine similarity is just a normalized dot product

Turn this into a probability using
the sigmoid function:

30 / 56

How Skipgram classifier computes P(+|w, c)

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:

31

Word2vec: how to learn vectors

• Given the set of positive and negative training
instances, and an initial set of embedding vectors

• The goal of learning is to adjust those word
weights/vectors such that we:

• Maximize the similarity of the target word, context
word pairs (w , cpos) drawn from the positive data

• Minimize the similarity of the (w , cneg) pairs drawn
from the negative data.

32

Loss function for one w with cpos , cneg1 ...cnegk

• Maximize the similarity of the target with the actual context words, and
minimize the similarity of the target with the k negative sampled non-
neighbor words.

33

Learning the classifier

• How to learn?
• Stochastic gradient descent!

34

Skipgram embeddings

target words

context words

35

Learning the classifier

• How to learn?
• Stochastic gradient descent!

• SGNS learns two sets of embeddings
• Target embeddings matrix W
• Context embedding matrix C

• It's common to just add them together, representing
word i as the vector W_i + C_i

36

Skipgram classifier

• A probabilistic classifier, given
• a test target word w
• its context window of L words c1:L

• Estimates probability that w occurs in this window based on
similarity of w (embeddings) to c1:L (embeddings).

• To compute this, we just need embeddings for all the words.

37

Pre-trained Embeddings

Pre-trained embeddings

• I want to build a system to solve a task (e.g.,
sentiment analysis)
• Use pre-trained embeddings. Should I fine-tune?

• Lots of data: yes
• Just a small dataset: no

• But, for analysis of bias, semantic change across
corpora etc.
• Train embeddings from scratch

39

40

Word embedding in R

Word2Vec embeddings in R
library(word2vec)

cbow_model = word2vec(x = data, type = "cbow", dim = 15,
 iter = 20)

finding lookalike
cbow_lookslike <- predict(cbow_model, c("hotel", "airbus"),
 type = "nearest", top_n = 5)

print("The nearest words for hotel and airbus in CBOW model
prediction is as follows ")

print(cbow_lookslike)
42

GloVe embeddings in R
library(text2vec)
https://www.rdocumentation.org/packages/text2vec/versions/0.5.1/topics/GlobalVectors

glove <- GlobalVectors$new(word_vectors_size, vocabulary, x_max, learning_rate = 0.15,
 alpha = 0.75, lambda = 0.0, shuffle = FALSE, initial = NULL)

target word vectors
x is the input data, a term co-occurence matrix.
wv_main <- glove$fit_transform(x, n_iter = 10L, convergence_tol = -1, n_check_convergence = 1L,
 n_threads = RcppParallel::defaultNumThreads())
context word vectors
wv_context <- glove$components

we can also use their summation
word_vectors <- wv_main + t(wv_context)

43

Layer embedding in keras
layer_embedding(input_dim = max_words, output_dim = dim_size,
 input_length = maxlen,
 # put weights into list and do not allow training
 weights = list(word_embeds), trainable = FALSE)

https://www.rdocumentation.org/packages/keras/versions/2.7.0/topics/layer_embedding

44

https://www.rdocumentation.org/packages/keras/versions/2.7.0/topics/layer_embedding

Recurrent Neural Network
(RNN)

Recurrent Neural Network

• Another famous architecture of Deep Learning
• Preferred algorithm for sequential data

• text, time series, speech, financial data, audio, video,
weather and much more.

• text: sentiment analysis, sequence labeling, part of speech
tagging, machine translation, etc.

• Maintains internal memory, thus can remember its
previous inputs

46

Simple recurrent network

47

Simple recurrent network

48

Simple recurrent network

49

W
 V

U

W
 V

U

W

U

The problem of Vanishing Gradient

• Consider a RNN model for a machine translation task from English to
Dutch.

• It has to read an English sentence, store as much information as
possible in its hidden activations, and output a Dutch sentence.

• The information about the first word in the sentence doesn’t get used
in the predictions until it starts generating Dutch words.

• There’s a long temporal gap from when it sees an input to when it uses
that to make a prediction.

• It can be hard to learn long-distance dependencies.
• In order to adjust the input-to-hidden weights based on the first input,

the error signal needs to travel backwards through this entire pathway.

50

Vanishing / Exploding gradient

• Vanishing gradient: the term goes to zero
exponentially fast, which makes it difficult to learn
some long period dependencies.

• Exploding gradient: the term goes to infinity
exponentially fast, and their value becomes a NaN due
to the unstable process.

51

Long Short-Term Memory
(LSTM)

Long Short-Term Memory

• Prevents vanishing/exploding gradient problem by:
• introducing a gating mechanism
• turning multiplication into addition

• Designed to make it easy to remember information over long
time periods.

• Considers both short-term and long-term memory.

53

Standard RNN

54

LSTM architecture

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 55

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM architecture

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 56

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM architecture

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 57

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Extensions

• Drop-out layer
• Bi-directional network: separate LSTMs process forward and

backward sequences, and hidden layers at each time step are
concatenated to form the cell output.

• Gated Recurrent Unit (GRU): LSTM that uses fewer gates,
combines forget and input gates into “update” gate,
eliminates cell state vector.

• Attention: Allows network to learn to attend to different parts
of the input at different time steps, shifting its attention to
focus on different aspects during its processing.

58

Transformers

Problems with RNN
•Pros:

• Arbitrary input length

• Fast and cheap inference

•Cons:

• Forward-looking

• No parallelization

• Gradient explosion or vanishing (for long sequences), even
for LSTMs

60

Transformer architecture

61

Transformer architecture
• Pros:

• Parallelization

• Bi-directional contextual representations

• Cons:

• Quadratic memory
• Limited input sequence length

62

Conclusion

• Word2vec
• Dense vectors
• Representation is created by training a classifier to

predict whether a word is likely to appear nearby
• RNN -> LSTM -> Transformers

63

Practical
Word embedding with GloVe and Keras

Questions?

	Slide 1
	Slide 2: Last week
	Slide 3: Today
	Slide 4: Natural Language Processing (NLP)
	Slide 5: NLP vs text mining
	Slide 6: Word Embedding Slides are partly based on the word embedding lecture by Dong Nguyen in the Applied Text Mining Utrecht summer school (linkToRCourse, linkToPythonCouse) & And partly from chapter 6 of Speech and Language Processing (3rd ed. draft
	Slide 7: Word representations
	Slide 8: Word as vectors
	Slide 9: Word as vectors
	Slide 10: Word as vectors
	Slide 11: Words as Vectors
	Slide 12: One-hot encoding
	Slide 13: One-hot encoding
	Slide 14: One-hot encoding
	Slide 15: Distributional hypothesis: Words that occur in similar contexts tend to have similar meanings.
	Slide 16: Word vectors based on co-occurrences
	Slide 17: Word vectors based on co-occurrences
	Slide 18: Word vectors based on co-occurrences
	Slide 19: Word embeddings are better!
	Slide 20: How do we learn word embeddings?
	Slide 21: Learning word embeddings
	Slide 22: Learning word embeddings
	Slide 23: Word2Vec
	Slide 24: Word2Vec
	Slide 25: Word2Vec
	Slide 26: Word2Vec algorithms
	Slide 27: Word2Vec algorithms
	Slide 28: Skipgram overview
	Slide 29: Skipgram
	Slide 30: Skipgram
	Slide 31: How Skipgram classifier computes P(+|w, c)
	Slide 32: Word2vec: how to learn vectors
	Slide 33: Loss function for one w with cpos , cneg1 ...cnegk
	Slide 34: Learning the classifier
	Slide 35: Skipgram embeddings
	Slide 36: Learning the classifier
	Slide 37: Skipgram classifier
	Slide 38: Pre-trained Embeddings
	Slide 39: Pre-trained embeddings
	Slide 40
	Slide 41: Word embedding in R
	Slide 42: Word2Vec embeddings in R
	Slide 43: GloVe embeddings in R
	Slide 44: Layer embedding in keras
	Slide 45: Recurrent Neural Network (RNN)
	Slide 46: Recurrent Neural Network
	Slide 47: Simple recurrent network
	Slide 48: Simple recurrent network
	Slide 49: Simple recurrent network
	Slide 50: The problem of Vanishing Gradient
	Slide 51: Vanishing / Exploding gradient
	Slide 52: Long Short-Term Memory (LSTM)
	Slide 53: Long Short-Term Memory
	Slide 54: Standard RNN
	Slide 55: LSTM architecture
	Slide 56: LSTM architecture
	Slide 57: LSTM architecture
	Slide 58: Extensions
	Slide 59: Transformers
	Slide 60: Problems with RNN
	Slide 61: Transformer architecture
	Slide 62: Transformer architecture
	Slide 63: Conclusion
	Slide 64: Practical
	Slide 65: Questions?

