Text Mining 2
Word Embedding & Recurrent Neural
Networks

Ayoub Bagheri

Last week

* Text mining
* Pre-processing text data

* Vector space model
« Bag-of-words

* Topic modeling

Today

* Word embedding
« Skipgram learning
 Pre-trained embeddings

« Recurrent neural networks
« LSTM
e Extensions

e State-of-the-art

Word Embedding

Slides are partly based on the word embedding lecture by Dong Nguyen in the
Applied Text Mining Utrecht summer school (linkToRCourse, linkToPythonCouse)
&

And partly from chapter 6 of Speech and Language Processing (3rd ed. draft),
Dan Jurafsky and James H. Martin
https://web.stanford.edu/~jurafsky/slp3/

https://utrechtsummerschool.nl/courses/social-sciences/data-science-introduction-to-text-mining-with-r
https://utrechtsummerschool.nl/courses/social-sciences/data-science-applied-text-mining

Word representations

How can we represent the meaning of words?

So, we can ask:
« How similar iIs cat to dog, or Paris to London?
« How similar is document A to document B?

Word as vectors

Can we represent words as vectors?

The vector representations should:
 capture semantics

= similar words should be close to each other in the
vector space

= relation between two vectors should reflect the
relationship between the two words

* be efficient (vectors with fewer dimensions are easier to
work with)

* be interpretable

Word as vectors

Word as vectors

https://fh295.github.io/simlex.html

Words as Vectors

One-hot encoding

Map each word to a unique identifier
e.g. cat (3) and dog (5).
« Vector representation: all zeros, except 1 at the ID

10/56

One-hot encoding

Map each word to a unique identifier
e.g. cat (3) and dog (5).
« Vector representation: all zeros, except 1 at the ID

11

One-hot encoding

Map each word to a unique identifier
e.g. cat (3) and dog (5).
 Vector representation: all zeros, except 1 at the ID

cat o o 1 O O O O Even related words

have distinct vectors!
dog o0 0o O O 1 O O
High number of

car 0O O O O O o0 1 dimensions

12

Words that
occur in similar contexts tend to have
similar meanings.

You shall know a word by the company it keeps.
(Firth,). R. 1957:11)

Word vectors based on co-occurrences

doc; docs docs docys docs docg docs
cat 5 2 0] 1 4 0 0]

] dog 7 3 1 0 2 0 0
word-document matrix

car O 0 1 3 2 1 1

Word vectors based on co-occurrences

word-document matrix

word-word matrix

cat
dog

car

cat
dog

car

doc; docs docs docys docs docg docs

5 2 0 1 4 0 0
7 2 1 0 2 0 0
0 0 1 3 2 1 1

cat dog car bike book house tree
0 3 1 1 1 2 3

15

Word vectors based on co-occurrences

There are many variants:
» Context (words, documents, which window size, etc.)
 Weighting (raw frequency, etc.)

Vectors are sparse: Many zero entries.
Therefore: Dimensionality reduction is often used (e.g., SVD)

These methods are sometimes called count-based methods as
they work directly on co-occurrence counts.

16

Word embeddings

e Vectors are short;
typically 50-1024 cat S
dimensions ©
 Vectors are dense
(mostly non-zero values)
* Very effective for many
NLP tasks ©
 Individual dimensions
are less interpretable ®

dog = 0.32

0.48

0.42

-0.01

-0.09

0.28

0.78

17

How do we learn word embeddings?

Learning word embeddings

cat =
dog =
tree =

0.12 ..
0.92 ...
-0.12 ...

-0-2

-0-1
0.1

19

Learning word embeddings

i 3 Cﬁt = 0-12 z o oo -002
. ‘(\}/\;o;dzvec, dog= 0.92 ... -0.1
' ove, " tree= -0.12 ... O.1

~ fastText

20/ 56

Training data for word embeddings

* Use text itself as training data for the model!
A form of self-supervision.

» Train a classifier (neural network, logistic regression,
or SVM, etc.) to predict the next word given previous
words.

Exercise: Word prediction task

Yesterday | went to the

A new study has highlighted the positive

Which word comes next?

22

Word2Vec

* Popular embedding method
* Very fast to train

e |[dea: predict rather than count

- https://projector.tensorflow.org/

https://projector.tensorflow.org/

Word2Vec

The domestic ecat is a small, typically furry carnivorous mammal
W_o W_q Wy Wy Wy Wg Wy Wy

&
Ld

We have target words (cat) and context words (here:
window size = 5).

24

Word2Vec

* Instead of counting how often each word w occurs near a
target word
« Train a classifier on a binary prediction task:
* Is w likely to show up near target?

« We don't actually care about this task
« But we'll take the learned classifier weights as the word embeddings
* Big idea: self-supervision
« Aword c that occurs near target in the corpus as the gold "correct
answer" for supervised learning
* No need for human labels
* Bengio et al. (2003); Collobert et al. (2011)

25

Word2Vec algorithms

Continuous Bag-Of-Words (CBOW)

—W_9

—— \
-

—>’LU1/

one snowy ? she went

26

Word2Vec algorithms

Continuous Bag-Of-Words (CBOW) skipgram

—— \
= &

—>’LU1/

one snowy ? she went ? ? day ? ?

27

Skipgram overview

The domestic cat is a small, typically furry carnivorous mammal
1. Create examples

* Positive examples: Target word and word (w) context(c) label
neighboring context cat small 1
. Negative examples: Target word and < furry 1

cat car (0]

randomly sampled words from the
lexicon (negative sampling)

2. Train a logistic regression model
to distinguish between the positive
and negative examples

Embedding vectors are essentially
: . |
3. The resulting weights are the picdi

embeddings!

28

Skipgram

The domestic ecat is a small, typically furry carnivorous mammal
W_o W_q Wy Wy Wy Wg Wy Wy

We have target words (cat) and context words (here: window size = 5).

The probability that c is a real context word, and the probability that c is
not a real context word:

P(+|w, c)
P(-|w,c)=1-P(+|w, c)

29

Skipgram

Similarity is computed from dot product

* Intuition: A word c is likely to occur near the target w if its embedding is
similar to the target embedding.

~ W - C

« Two vectors are similar if they have a high dot product
« Cosine similarity is just a normalized dot product

.. - . P(_vac) — G(C'W):l —
Turn this into a probability using +exp(—c-w)

the sigmoid function: P(—|w,c)

1 _P(—HWJC)

o(—c-w)=
(=c-w) 1 +exp(c-w)
30/56

How Skipgram classifier computes P(+|w, c)

1

P(+|w,c) = o(c-w)= T exp (e)

This is for one context word, but we have lots of context words.

We'll assume independence and just multiply them:

L
P(+wcrr) = []o(ci-w)
=1

10gP(—|—‘W,Cl;L)

L
Zlog o(ci-w)
i=1

31

Word2vec: how to learn vectors

 Given the set of positive and negative training
Instances, and an initial set of embedding vectors

* The goal of learning is to adjust those word vectors
such that we:

the similarity of the target word, context
word pairs (w, cpos) drawn from the positive data

the similarity of the (w, cneg) pairs drawn
from the negative data.

32

Loss function for one w with Cpos, Cneg1 ...Cnegr

« Maximize the similarity of the target with the actual context words, and
minimize the similarity of the target with the k negative sampled non-

neighbor words.

Lcg

k
= —log P(—|—|w,cp05)HP(—|w,cneg{.)}
=1

k
logP(—|—|wj Cpos) + ZlOgP(—|wj Cneg;):|
i=1

k
log P(+|w, cpos) + 2103 (1 — P(+|w, Cneg;))}
i=1

k
log 6 (cpos - W) + Z log 6 (—Cpeg, - w)}
i=1

33

Learning the classifier

* How to learn?
« Stochastic gradient descent!

Skipgram embeddings

aardvark

apricot

9 _ zebra

aardvark

apricot

zebra

1.d

1

\

- W target words

V]|)
W+ 1)

- C context words
YA,

35

Learning the classifier

* How to learn?
« Stochastic gradient descent!

* SGNS learns two sets of embeddings
« Target embeddings matrix W
« Context embedding matrix C

e It's common to just add them together, representing
word I as the vector Wi + Ci

36

Skipgram classifier

A probabilistic classifier, given
 a test target word w
* its context window of L words c1.L

« Estimates probability that w occurs in this window based on
similarity of w (embeddings) to ciL(embeddings).

« To compute this, we just need embeddings for all the words.

37

Pre-trained Embeddings

Pre-trained embeddings

» | want to build a system to solve a task (e.g.,
sentiment analysis)

 Use pre-trained embeddings. Should | fine-tune?
 Lots of data: yes
* Just a small dataset: no

- Analysis (e.g., bias, semantic change)
* Train embeddings from scratch

39

Word embedding in R

GloVe embedding in R

library(text2vec)
https://www.rdocumentation.org/packages/text2vec/versions/0.5.1/topics/GlobalVectors

glove <- GlobalVectors$new(word vectors size, vocabulary, x_max, learning rate = 0.15,
alpha = 0.75, lambda = 0.0, shuffle = FALSE, initial = NULL)

target word vectors

x 1s the input data, a term co-occurence matrix.

wv_main <- glove$fit_transform(x, n_iter = 10L, convergence_tol = -1, n_check_convergence = 1L,
n_threads = RcppParallel::defaultNumThreads())

context word vectors

wv_context <- glove$components

we can also use thelr summation
word _vectors <- shakes wv_main + t(shakes_wv_context)

41

Layer embedding in keras

layer_embedding(input_dim = max_words, output _dim = dim_size,
input_length = maxlen,

put welghts 1nto list and do not allow training
FALSE)

weights = list(word _embeds), trainable

https://www.rdocumentation.org/packages/keras/versions/2.7.0/topics/layer_embedding

42

https://www.rdocumentation.org/packages/keras/versions/2.7.0/topics/layer_embedding

Recurrent Neural Network
(RN N)

Recurrent Neural Network

« Another famous architecture of Deep Learning

 Preferred algorithm for sequential data

 time series, speech, text, financial data, audio, video,
weather and much more.

* text: sentiment analysis, sequence labeling, speech
tagging, machine translation, etc.

e Maintains internal memory, thus can remember its
previous inputs

44

Simple recurrent network

hidden, z(t)

\
\ COpy Z

hidden, z(t-1)

LA

)
!
A

¢

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Simple recurrent network

—

®—{>O

output, y(t)
A
hidden, z(t)

s

o np:f olah.gb.iofpostsfé:; dersta
o] | I

A - AH— A—A——

b b o

r—

=.
=
@

Training RNNs

* RNNs can be trained using “backpropagation through time.”
« Can viewed as applying normal backprop to the unrolled

network.
® ' training outputs
-aF - 2] %I
OF - R
©, @ ® - ® training inputs

backpropagated errors

47

The problem of Vanishing Gradient

. Consri]der a RNN model for a machine translation task from English to
Dutc

» It has to read an English sentence, store as much information as
possible in its hidden activations, and output a Dutch sentence.

» The information about the first word in the sentence doesn’t get used
in the predictions until it starts generating Dutch words.

* There's a long temporal gap from when it sees an input to when it uses
that to make a prediction.

* It can be hard to learn long-distance dependencies.

* In order to adjust the input-to-hidden weights based on the first input,
the error signal needs to travel backwards through this entire pathway.

48

Vanishing / Exploding gradient

oL Z': oL, (& oh \oh,
P N Y T
oW S ow oh_ |ow

i=0 i=0 \ i=k+I

- Vanishing gradient: the term goes to zero
exponentially fast, which makes it difficult to learn
some long period dependencies.

- Exploding gradient: the term goes to infinity
exponentially fast, and their value becomes a NaN due
to the unstable process.

49

Long Short-Term Memory
(LSTM)

Long Short-Term Memory

* Prevents vanishing/exploding gradient problem by:

* introducing a gating mechanism
 turning multiplication into addition

* Designed to make It easy to remember information over long
time periods until it's needed.

* The activations of a network correspond to short-term
memory, while the weights correspond to long-term memory.

51

LSTM architecture

- R 4 NE \
> o> >
5 Lebs ' | &
\I)—quL J—P\I j-’

Neural Network Pointwise
Layer Operation

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vector

Transfer Concatenate Copy

52

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Extensions

* Bi-directional network: separate LSTMs process forward and
backward sequences, and hidden layers at each time step are
concatenated to form the cell output.

- Gated Recurrent Unit (GRU): alternative RNN to LSTM that uses
fewer gates, combines forget and input gates into “update”
gate, eliminates cell state vector.

* Attention: Allows network to learn to attend to different parts
of the input at different time steps, shifting its attention to
focus on different aspects during its processing.

53

State-of-the-art

* Transformers
« Contextual embeddings

Conclusion

e Information Retrieval workhorse!
« Acommon baseline model
e Sparse vectors

 Words are represented by (a simple function of) the counts
of nearby words

* Dense vectors

« Representation is created by training a classifier to predict
whether a word iIs likely to appear nearby

55

Practical
Word embedding with GloVe and Keras

Exam

* Friday, February 4t at 9:00
* On location
* Bring your own laptop

« BBG 083
« Buys Ballot building: https://www.uu.nl/en/buys-ballot-building

57

https://www.uu.nl/en/buys-ballot-building

Questions?

Skipgram

1. Treat the target word t and a neighboring context
word c as positive examples.

2. Randomly sample other words in the lexicon to get
negative examples

3. Use logistic regression to train a classifier to
distinguish those two cases

4. Use the learned weights as the embeddings

59

https://towardsdatascience.com/the-exploding-and-
vanishing-gradients-problem-in-time-series-6b87d558d22

https://towardsdatascience.com/the-exploding-and-vanishing-gradients-problem-in-time-series-6b87d558d22

Backpropagation
Through Time

https://towardsdatascience.com/the-exploding-and-
vanishing-gradients-problem-in-time-series-6b87d558d22

Loss Function

output (estimate) @
true label @

{

L= Zz ﬁz (gta yt)

‘Forward Pass:
ht ’ gt’ Eta L

Backward Pass:
oL 0oL O0L oOL 0L

oU’ oV’ OW '’ by, b,

https://towardsdatascience.com/the-exploding-and-vanishing-gradients-problem-in-time-series-6b87d558d22

