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Last week

* Text mining
* Pre-processing text data

* Vector space model
« Bag-of-words

* Topic modeling



Today

* Word embedding
« Skipgram learning
 Pre-trained embeddings

« Recurrent neural networks
« LSTM
e Extensions

e State-of-the-art



Word Embedding

Slides are partly based on the word embedding lecture by Dong Nguyen in the
Applied Text Mining Utrecht summer school (linkToRCourse, linkToPythonCouse)
&

And partly from chapter 6 of Speech and Language Processing (3rd ed. draft),
Dan Jurafsky and James H. Martin
https://web.stanford.edu/~jurafsky/slp3/



https://utrechtsummerschool.nl/courses/social-sciences/data-science-introduction-to-text-mining-with-r
https://utrechtsummerschool.nl/courses/social-sciences/data-science-applied-text-mining

Word representations

How can we represent the meaning of words?

So, we can ask:
« How similar iIs cat to dog, or Paris to London?
« How similar is document A to document B?



Word as vectors

Can we represent words as vectors?

The vector representations should:
 capture semantics

= similar words should be close to each other in the
vector space

= relation between two vectors should reflect the
relationship between the two words

* be efficient (vectors with fewer dimensions are easier to
work with)

* be interpretable



Word as vectors




Word as vectors



https://fh295.github.io/simlex.html

Words as Vectors



One-hot encoding

Map each word to a unique identifier
e.g. cat (3) and dog (5).
« Vector representation: all zeros, except 1 at the ID
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One-hot encoding

Map each word to a unique identifier
e.g. cat (3) and dog (5).
 Vector representation: all zeros, except 1 at the ID

cat o o 1 O O O O Even related words

have distinct vectors!
dog o0 0o O O 1 O O
High number of

car 0O O O O O o0 1 dimensions
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Words that
occur in similar contexts tend to have
similar meanings.

You shall know a word by the company it keeps.
(Firth, ). R. 1957:11)



Word vectors based on co-occurrences

doc; docs docs docys docs docg docs
cat 5 2 0] 1 4 0 0]

] dog 7 3 1 0 2 0 0
word-document matrix

car O 0 1 3 2 1 1



Word vectors based on co-occurrences

word-document matrix

word-word matrix

cat
dog

car

cat
dog

car

doc; docs docs docys docs docg docs

5 2 0 1 4 0 0
7 2 1 0 2 0 0
0 0 1 3 2 1 1

cat dog car bike book house tree
0 3 1 1 1 2 3
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Word vectors based on co-occurrences

There are many variants:
» Context (words, documents, which window size, etc.)
 Weighting (raw frequency, etc.)

Vectors are sparse: Many zero entries.
Therefore: Dimensionality reduction is often used (e.g., SVD)

These methods are sometimes called count-based methods as
they work directly on co-occurrence counts.
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Word embeddings

e Vectors are short;
typically 50-1024 cat S
dimensions ©
 Vectors are dense
(mostly non-zero values)
* Very effective for many
NLP tasks ©
 Individual dimensions
are less interpretable ®

dog = 0.32

0.48

0.42

-0.01

-0.09

0.28

0.78
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How do we learn word embeddings?



Learning word embeddings

cat =
dog =
tree =

0.12 ..
0.92 ...
-0.12 ...

-0-2

-0-1
0.1
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Learning word embeddings

i 3 Cﬁt = 0-12 z o oo -002
. ‘(\}/\;o;dzvec, dog= 0.92 ... -0.1
' ove, " tree= -0.12 ... O.1

~ fastText
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Training data for word embeddings

* Use text itself as training data for the model!
A form of self-supervision.

» Train a classifier (neural network, logistic regression,
or SVM, etc.) to predict the next word given previous
words.



Exercise: Word prediction task

Yesterday | went to the

A new study has highlighted the positive

Which word comes next?
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Word2Vec

* Popular embedding method
* Very fast to train

e |[dea: predict rather than count

- https://projector.tensorflow.org/



https://projector.tensorflow.org/

Word2Vec

The domestic ecat is a small, typically furry carnivorous mammal
W_o W_q Wy Wy Wy Wg Wy Wy

&
Ld

We have target words (cat) and context words (here:
window size = 5).
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Word2Vec

* Instead of counting how often each word w occurs near a
target word
« Train a classifier on a binary prediction task:
* Is w likely to show up near target?

« We don't actually care about this task
« But we'll take the learned classifier weights as the word embeddings
* Big idea: self-supervision
« Aword c that occurs near target in the corpus as the gold "correct
answer" for supervised learning
* No need for human labels
* Bengio et al. (2003); Collobert et al. (2011)
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Word2Vec algorithms

Continuous Bag-Of-Words (CBOW)

—W_9

—— \
-

—>’LU1/

one snowy ? she went
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Word2Vec algorithms

Continuous Bag-Of-Words (CBOW) skipgram

—— \
= &

—>’LU1/

one snowy ? she went ? ? day ? ?
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Skipgram overview

The domestic cat is a small, typically furry carnivorous mammal
1. Create examples

* Positive examples: Target word and word (w)  context(c) label
neighboring context cat small 1
. Negative examples: Target word and < furry 1

cat car (0]

randomly sampled words from the
lexicon (negative sampling)

2. Train a logistic regression model
to distinguish between the positive
and negative examples

Embedding vectors are essentially
: . |
3. The resulting weights are the picdi

embeddings!
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Skipgram

The domestic ecat is a small, typically furry carnivorous mammal
W_o W_q Wy Wy Wy Wg Wy Wy

We have target words (cat) and context words (here: window size = 5).

The probability that c is a real context word, and the probability that c is
not a real context word:

P(+|w, c)
P(-|w,c)=1-P(+|w, c)
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Skipgram

Similarity is computed from dot product

* Intuition: A word c is likely to occur near the target w if its embedding is
similar to the target embedding.

~ W - C

« Two vectors are similar if they have a high dot product
« Cosine similarity is just a normalized dot product

.. - . P(_vac) — G(C'W):l —
Turn this into a probability using +exp(—c-w)

the sigmoid function: P(—|w,c)

1 _P(—HWJC)

o(—c-w)=
(=c-w) 1 +exp(c-w)
30/56



How Skipgram classifier computes P(+|w, c)

1

P(+|w,c) = o(c-w)= T exp (e )

This is for one context word, but we have lots of context words.

We'll assume independence and just multiply them:

L
P(+wcrr) = []o(ci-w)
=1

10gP(—|—‘W,Cl;L)

L
Zlog o(ci-w)
i=1
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Word2vec: how to learn vectors

 Given the set of positive and negative training
Instances, and an initial set of embedding vectors

* The goal of learning is to adjust those word vectors
such that we:

the similarity of the target word, context
word pairs (w, cpos) drawn from the positive data

the similarity of the (w, cneg) pairs drawn
from the negative data.
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Loss function for one w with Cpos, Cneg1 ...Cnegr

« Maximize the similarity of the target with the actual context words, and
minimize the similarity of the target with the k negative sampled non-

neighbor words.

Lcg

k
= —log P(—|—|w,cp05)HP(—|w,cneg{.)}
=1

k
logP(—|—|wj Cpos) + ZlOgP(—|wj Cneg;):|
i=1

k
log P(+|w, cpos) + 2103 (1 — P(+|w, Cneg;))}
i=1

k
log 6 (cpos - W) + Z log 6 (—Cpeg, - w)}
i=1

33



Learning the classifier

* How to learn?
« Stochastic gradient descent!



Skipgram embeddings

aardvark

apricot

9 _ zebra

aardvark

apricot

zebra

1.d

1

\

- W target words

V]| )
W+ 1)

- C context words
YA,
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Learning the classifier

* How to learn?
« Stochastic gradient descent!

* SGNS learns two sets of embeddings
« Target embeddings matrix W
« Context embedding matrix C

e It's common to just add them together, representing
word I as the vector Wi + Ci
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Skipgram classifier

A probabilistic classifier, given
 a test target word w
* its context window of L words c1.L

« Estimates probability that w occurs in this window based on
similarity of w (embeddings) to ciL(embeddings).

« To compute this, we just need embeddings for all the words.
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Pre-trained Embeddings



Pre-trained embeddings

» | want to build a system to solve a task (e.g.,
sentiment analysis)

 Use pre-trained embeddings. Should | fine-tune?
 Lots of data: yes
* Just a small dataset: no

- Analysis (e.g., bias, semantic change)
* Train embeddings from scratch
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Word embedding in R



GloVe embedding in R

library(text2vec)
# https://www.rdocumentation.org/packages/text2vec/versions/0.5.1/topics/GlobalVectors

glove <- GlobalVectors$new(word vectors size, vocabulary, x_max, learning rate = 0.15,
alpha = 0.75, lambda = 0.0, shuffle = FALSE, initial = NULL)

# target word vectors

# x 1s the input data, a term co-occurence matrix.

wv_main <- glove$fit_transform(x, n_iter = 10L, convergence_tol = -1, n_check_convergence = 1L,
n_threads = RcppParallel::defaultNumThreads())

# context word vectors

wv_context <- glove$components

# we can also use thelr summation
word _vectors <- shakes wv_main + t(shakes_wv_context)
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Layer embedding in keras

layer_embedding(input_dim = max_words, output _dim = dim_size,
input_length = maxlen,

# put welghts 1nto list and do not allow training
FALSE)

weights = list(word _embeds), trainable

https://www.rdocumentation.org/packages/keras/versions/2.7.0/topics/layer_embedding
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https://www.rdocumentation.org/packages/keras/versions/2.7.0/topics/layer_embedding

Recurrent Neural Network
(RN N)



Recurrent Neural Network

« Another famous architecture of Deep Learning

 Preferred algorithm for sequential data

 time series, speech, text, financial data, audio, video,
weather and much more.

* text: sentiment analysis, sequence labeling, speech
tagging, machine translation, etc.

e Maintains internal memory, thus can remember its
previous inputs
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Simple recurrent network

hidden, z(t)

\
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hidden, z(t-1)
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¢

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Simple recurrent network
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Training RNNs

* RNNs can be trained using “backpropagation through time.”
« Can viewed as applying normal backprop to the unrolled

network.
® ' training outputs
-aF - 2] %I
OF - R
©, @ ® - ® training inputs

backpropagated errors
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The problem of Vanishing Gradient

. Consri]der a RNN model for a machine translation task from English to
Dutc

» It has to read an English sentence, store as much information as
possible in its hidden activations, and output a Dutch sentence.

» The information about the first word in the sentence doesn’t get used
in the predictions until it starts generating Dutch words.

* There's a long temporal gap from when it sees an input to when it uses
that to make a prediction.

* It can be hard to learn long-distance dependencies.

* In order to adjust the input-to-hidden weights based on the first input,
the error signal needs to travel backwards through this entire pathway.
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Vanishing / Exploding gradient

oL Z': oL, (& oh \oh,
P N Y T
oW S ow oh_ |ow

i=0 i=0 \ i=k+I

- Vanishing gradient: the term goes to zero
exponentially fast, which makes it difficult to learn
some long period dependencies.

- Exploding gradient: the term goes to infinity
exponentially fast, and their value becomes a NaN due
to the unstable process.
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Long Short-Term Memory
(LSTM)



Long Short-Term Memory

* Prevents vanishing/exploding gradient problem by:

* introducing a gating mechanism
 turning multiplication into addition

* Designed to make It easy to remember information over long
time periods until it's needed.

* The activations of a network correspond to short-term
memory, while the weights correspond to long-term memory.
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LSTM architecture

- R 4 NE \
> o> >
5 Lebs ' | &
\I )—quL J—P\I j-’

Neural Network Pointwise
Layer Operation

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vector

Transfer Concatenate Copy
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Extensions

* Bi-directional network: separate LSTMs process forward and
backward sequences, and hidden layers at each time step are
concatenated to form the cell output.

- Gated Recurrent Unit (GRU): alternative RNN to LSTM that uses
fewer gates, combines forget and input gates into “update”
gate, eliminates cell state vector.

* Attention: Allows network to learn to attend to different parts
of the input at different time steps, shifting its attention to
focus on different aspects during its processing.
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State-of-the-art

* Transformers
« Contextual embeddings



Conclusion

e Information Retrieval workhorse!
« Acommon baseline model
e Sparse vectors

 Words are represented by (a simple function of) the counts
of nearby words

* Dense vectors

« Representation is created by training a classifier to predict
whether a word iIs likely to appear nearby
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Practical
Word embedding with GloVe and Keras



Exam

* Friday, February 4t at 9:00
* On location
* Bring your own laptop

« BBG 083
« Buys Ballot building: https://www.uu.nl/en/buys-ballot-building
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https://www.uu.nl/en/buys-ballot-building

Questions?



Skipgram

1. Treat the target word t and a neighboring context
word c as positive examples.

2. Randomly sample other words in the lexicon to get
negative examples

3. Use logistic regression to train a classifier to
distinguish those two cases

4. Use the learned weights as the embeddings
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https://towardsdatascience.com/the-exploding-and-
vanishing-gradients-problem-in-time-series-6b87d558d22



https://towardsdatascience.com/the-exploding-and-vanishing-gradients-problem-in-time-series-6b87d558d22

Backpropagation
Through Time

https://towardsdatascience.com/the-exploding-and-
vanishing-gradients-problem-in-time-series-6b87d558d22

Loss Function

output (estimate) @
true label @

{

L= Zz ﬁz (gta yt)

‘Forward Pass:
ht ’ gt’ Eta L

Backward Pass:
oL 0oL O0L oOL 0L

oU’ oV’ OW '’ by, b,



https://towardsdatascience.com/the-exploding-and-vanishing-gradients-problem-in-time-series-6b87d558d22

