
Text Mining 2

Ayoub Bagheri

Word Embedding & Recurrent Neural
Networks

Last week
• Text mining
• Pre-processing text data
• Vector space model

• Bag-of-words

• Topic modeling

2

Today
• Word embedding

• Skipgram learning
• Pre-trained embeddings

• Recurrent neural networks
• LSTM
• Extensions

• State-of-the-art

3

Word Embedding
Slides are partly based on the word embedding lecture by Dong Nguyen in the

Applied Text Mining Utrecht summer school (linkToRCourse, linkToPythonCouse)
&

And partly from chapter 6 of Speech and Language Processing (3rd ed. draft),
Dan Jurafsky and James H. Martin

https://web.stanford.edu/~jurafsky/slp3/

https://utrechtsummerschool.nl/courses/social-sciences/data-science-introduction-to-text-mining-with-r
https://utrechtsummerschool.nl/courses/social-sciences/data-science-applied-text-mining

Word representations
How can we represent the meaning of words?

So, we can ask:
• How similar is cat to dog, or Paris to London?
• How similar is document A to document B?

5

Word as vectors
Can we represent words as vectors?
The vector representations should:

• capture semantics
▪ similar words should be close to each other in the

vector space
▪ relation between two vectors should reflect the

relationship between the two words
• be efficient (vectors with fewer dimensions are easier to

work with)
• be interpretable

6

Word as vectors

How similar are the following two words? (not similar 0–10 very similar)

smart and intelligent:
easy and big:
easy and difficult:
hard and difficult:

7

Word as vectors

How similar are the following two words? (not similar 0–10 very similar)

smart and intelligent: 9.20
easy and big: 1.12
easy and difficult: 0.58
hard and difficult: 8.77

(SimLex-999 dataset, https://fh295.github.io/simlex.html)

8

https://fh295.github.io/simlex.html

Words as Vectors

One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID

10 / 56

One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID

What are limitations
of one-hot encodings?

11

One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID

Even related words
have distinct vectors!

High number of
dimensions

12

Distributional hypothesis: Words that
occur in similar contexts tend to have
similar meanings.

You shall know a word by the company it keeps.
(Firth, J. R. 1957:11)

13

Word vectors based on co-occurrences

documents as context
word-document matrix

14

Word vectors based on co-occurrences

documents as context
word-document matrix

neighboring words as context
word-word matrix

15

Word vectors based on co-occurrences

There are many variants:
• Context (words, documents, which window size, etc.)
• Weighting (raw frequency, etc.)

Vectors are sparse: Many zero entries.
Therefore: Dimensionality reduction is often used (e.g., SVD)

These methods are sometimes called count-based methods as
they work directly on co-occurrence counts.

16

Word embeddings
• Vectors are short;

typically 50-1024
dimensions ☺
• Vectors are dense

(mostly non-zero values)
• Very effective for many

NLP tasks ☺
• Individual dimensions

are less interpretable
17

How do we learn word embeddings?

Learning word embeddings

19

Learning word embeddings

20 / 56

Training data for word embeddings

• Use text itself as training data for the model!
• A form of self-supervision.

• Train a classifier (neural network, logistic regression,
or SVM, etc.) to predict the next word given previous
words.

21

Exercise: Word prediction task

Yesterday I went to the ?

A new study has highlighted the positive ?

Which word comes next?

22

Word2Vec

• Popular embedding method
• Very fast to train
• Idea: predict rather than count

• https://projector.tensorflow.org/

23

https://projector.tensorflow.org/

Word2Vec

We have target words (cat) and context words (here:
window size = 5).

24

Word2Vec

• Instead of counting how often each word w occurs near a
target word
• Train a classifier on a binary prediction task:

• Is w likely to show up near target?

• We don’t actually care about this task
• But we'll take the learned classifier weights as the word embeddings

• Big idea: self-supervision
• A word c that occurs near target in the corpus as the gold "correct

answer" for supervised learning
• No need for human labels
• Bengio et al. (2003); Collobert et al. (2011)

25

Word2Vec algorithms
Continuous Bag-Of-Words (CBOW)

26

Word2Vec algorithms
Continuous Bag-Of-Words (CBOW) skipgram

27

Skipgram overview
The domestic cat is a small, typically furry carnivorous mammal

1. Create examples
• Positive examples: Target word and

neighboring context
• Negative examples: Target word and

randomly sampled words from the
lexicon (negative sampling)

2. Train a logistic regression model
to distinguish between the positive
and negative examples

3. The resulting weights are the
embeddings!

Embedding vectors are essentially
a byproduct!

28

Skipgram

We have target words (cat) and context words (here: window size = 5).

The probability that c is a real context word, and the probability that c is
not a real context word:

29

Skipgram

Similarity is computed from dot product
• Intuition: A word c is likely to occur near the target w if its embedding is

similar to the target embedding.

• Two vectors are similar if they have a high dot product
• Cosine similarity is just a normalized dot product

Turn this into a probability using
the sigmoid function:

30 / 56

How Skipgram classifier computes P(+|w, c)

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:

31

Word2vec: how to learn vectors

• Given the set of positive and negative training
instances, and an initial set of embedding vectors

• The goal of learning is to adjust those word vectors
such that we:

• Maximize the similarity of the target word, context
word pairs (w , cpos) drawn from the positive data

• Minimize the similarity of the (w , cneg) pairs drawn
from the negative data.

32

Loss function for one w with cpos , cneg1 ...cnegk

• Maximize the similarity of the target with the actual context words, and
minimize the similarity of the target with the k negative sampled non-
neighbor words.

33

Learning the classifier

• How to learn?
• Stochastic gradient descent!

34

Skipgram embeddings

target words

context words

35

Learning the classifier

• How to learn?
• Stochastic gradient descent!

• SGNS learns two sets of embeddings
• Target embeddings matrix W
• Context embedding matrix C

• It's common to just add them together, representing
word i as the vector Wi + Ci

36

Skipgram classifier

• A probabilistic classifier, given
• a test target word w
• its context window of L words c1:L

• Estimates probability that w occurs in this window based on
similarity of w (embeddings) to c1:L (embeddings).

• To compute this, we just need embeddings for all the words.

37

Pre-trained Embeddings

Pre-trained embeddings

• I want to build a system to solve a task (e.g.,
sentiment analysis)
• Use pre-trained embeddings. Should I fine-tune?

• Lots of data: yes
• Just a small dataset: no

• Analysis (e.g., bias, semantic change)
• Train embeddings from scratch

39

Word embedding in R

GloVe embedding in R
library(text2vec)
https://www.rdocumentation.org/packages/text2vec/versions/0.5.1/topics/GlobalVectors

glove <- GlobalVectors$new(word_vectors_size, vocabulary, x_max, learning_rate = 0.15,
alpha = 0.75, lambda = 0.0, shuffle = FALSE, initial = NULL)

target word vectors
x is the input data, a term co-occurence matrix.
wv_main <- glove$fit_transform(x, n_iter = 10L, convergence_tol = -1, n_check_convergence = 1L,

n_threads = RcppParallel::defaultNumThreads())
context word vectors
wv_context <- glove$components

we can also use their summation
word_vectors <- shakes_wv_main + t(shakes_wv_context)

41

Layer embedding in keras
layer_embedding(input_dim = max_words, output_dim = dim_size,

input_length = maxlen,
put weights into list and do not allow training
weights = list(word_embeds), trainable = FALSE)

https://www.rdocumentation.org/packages/keras/versions/2.7.0/topics/layer_embedding

42

https://www.rdocumentation.org/packages/keras/versions/2.7.0/topics/layer_embedding

Recurrent Neural Network
(RNN)

Recurrent Neural Network

• Another famous architecture of Deep Learning
• Preferred algorithm for sequential data

• time series, speech, text, financial data, audio, video,
weather and much more.

• text: sentiment analysis, sequence labeling, speech
tagging, machine translation, etc.

• Maintains internal memory, thus can remember its
previous inputs

44

Simple recurrent network

45

Simple recurrent network

46

Training RNNs

• RNNs can be trained using “backpropagation through time.”
• Can viewed as applying normal backprop to the unrolled

network.

47

The problem of Vanishing Gradient

• Consider a RNN model for a machine translation task from English to
Dutch.

• It has to read an English sentence, store as much information as
possible in its hidden activations, and output a Dutch sentence.

• The information about the first word in the sentence doesn’t get used
in the predictions until it starts generating Dutch words.

• There’s a long temporal gap from when it sees an input to when it uses
that to make a prediction.

• It can be hard to learn long-distance dependencies.
• In order to adjust the input-to-hidden weights based on the first input,

the error signal needs to travel backwards through this entire pathway.

48

Vanishing / Exploding gradient

• Vanishing gradient: the term goes to zero
exponentially fast, which makes it difficult to learn
some long period dependencies.

• Exploding gradient: the term goes to infinity
exponentially fast, and their value becomes a NaN due
to the unstable process.

49

Long Short-Term Memory
(LSTM)

Long Short-Term Memory

• Prevents vanishing/exploding gradient problem by:
• introducing a gating mechanism
• turning multiplication into addition

• Designed to make it easy to remember information over long
time periods until it’s needed.

• The activations of a network correspond to short-term
memory, while the weights correspond to long-term memory.

51

LSTM architecture

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 52

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Extensions

• Bi-directional network: separate LSTMs process forward and
backward sequences, and hidden layers at each time step are
concatenated to form the cell output.

• Gated Recurrent Unit (GRU): alternative RNN to LSTM that uses
fewer gates, combines forget and input gates into “update”
gate, eliminates cell state vector.

• Attention: Allows network to learn to attend to different parts
of the input at different time steps, shifting its attention to
focus on different aspects during its processing.

53

State-of-the-art
• Transformers
• Contextual embeddings

54

Conclusion
• tf-idf

• Information Retrieval workhorse!
• A common baseline model
• Sparse vectors
• Words are represented by (a simple function of) the counts

of nearby words

• Word2vec
• Dense vectors
• Representation is created by training a classifier to predict

whether a word is likely to appear nearby
• RNN, topic modeling, …

55

Practical
Word embedding with GloVe and Keras

Exam
• Friday, February 4th at 9:00
• On location
• Bring your own laptop
• BBG 083

• Buys Ballot building: https://www.uu.nl/en/buys-ballot-building

57

https://www.uu.nl/en/buys-ballot-building

Questions?

Skipgram

1. Treat the target word t and a neighboring context
word c as positive examples.

2. Randomly sample other words in the lexicon to get
negative examples

3. Use logistic regression to train a classifier to
distinguish those two cases

4. Use the learned weights as the embeddings

59

RNN

https://towardsdatascience.com/the-exploding-and-
vanishing-gradients-problem-in-time-series-6b87d558d22

60

https://towardsdatascience.com/the-exploding-and-vanishing-gradients-problem-in-time-series-6b87d558d22

Backpropagation
Through Time

https://towardsdatascience.com/the-exploding-and-
vanishing-gradients-problem-in-time-series-6b87d558d22

61

https://towardsdatascience.com/the-exploding-and-vanishing-gradients-problem-in-time-series-6b87d558d22

